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INTRODUCTION

Verifpal is software for verifying the security of cryptographic protocol designs. Such protocols
are all around us: whenever you log into an online account or perform a banking transaction, you
use HTTPS and its underlying TLS protocol. Whenever you send a message over WhatsApp,
you use the Signal secure messaging protocol.

These protocols need to take care of some serious cryptographic responsibilities, which we call
security goals: TLS needs to ensure that your password is transmitted to Microsoft Outlook
without being readable by any middleman. It also needs to give you a way to make sure that you’re
sending it to Outlook.com and not some impersonator. We call these security goals confidentiality
and authentication, respectively.

It’s important to be able to verify whether TLS and Signal actually accomplish these goals.
Imagine, for example, if protocol flaws were found in prototypes of TLS that would allow for
weaker security [1]. Most communications over the Web would be affected, potentially leading
to the compromise of immeasurable amounts of confidential information from all facets of life.

However, protocols can get pretty complex, and reasoning about their security properties can
leave you lost in a labyrinth of logical representations and eventualities. That is why, more than
a decade ago, major strides began to happen in automated formal verification. Software such
as ProVerif [2] and Tamarin [3] began to appear, making it possible for researchers to write
models in which they formally describe the protocol they want to verify and the security goals
it’s supposed to accomplish2. The protocols that ProVerif and Tamarin have to handle can get
pretty intense: Figure 2 shows a slightly simplified execution of the Signal protocol in which
Alice initiates a session with Bob, sends a message, and then receives a reply from Bob. Go
ahead and flip to the Appendix at the end of this manual so you can take a look at the figure and
see what I mean.

Intimidated? Perfect. You’re reading the right manual: I created Verifpal exactly to make it easy
for everyone to understand how to verify cryptographic protocols, even if you have little prior
experience with how protocols work or how they are supposed to be designed.

2ProVerif, Tamarin and also Verifpal verify protocols in the symbolic model. Computational protocol verifiers,
such as CryptoVerif [4] also exist, but the computational model and its differences compared to the symbolic
model [5] are not within the purview of this manual.
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A major focus of my Ph.D. studies was modeling the latest Web protocols in ProVerif, including
TLS and Signal. I targeted not only confidentiality and authentication as security goals, but more
advanced properties such as forward secrecy and post-compromise security [6]. The former asks
the question: “does stealing Alice’s device allow the thief to decrypt messages she sent in the
past?”, while the latter asks the same question about the future, roughly speaking.

ProVerif’s analysis is currently considered state-of-the-art. The software has been under develop-
ment for close to two decades, and is capable of verification scenarios and queries that are far
more advanced than what Verifpal can accomplish today. However, I quickly came to understand
that some of its design decisions would leave it at a disadvantage with a wider audience who
deserves to have a starting chance at formal verification, but does not have access to the specific
background or culture from which ProVerif emerged.

For example, ProVerif more or less assumes an idiomatic understanding of the ML syntax tradition
(which inspired ProVerif’s modeling language, the “applied pi-calculus” [7]). It also expects the
user to intuitively reason about protocols as Horn clauses [8] that appear over the network, and
not as, say, messages between explicit principals such as Alice or Bob, which is far more likely
to be the natural way most people think about secure protocols. Furthermore, whenever ProVerif
finds an attack, it outputs long, complex attack traces which can sometimes require something of
an archaeological expedition in order to read and understand.

Verifpal’s design methodology is the inverse of the one usually seen in formal verification research:
in designing Verifpal, I wanted to focus on the user first, and on state-of-the-art formal verification
last. Yes, you read that correctly: last. Making advanced formal verification my final goal does
not mean that I don’t intend to get to it: it’s rather that I will only allow increases in verification
capability and features if and only if I know for sure that they can reach the user intuitively and
without harming the accessibility of the formal verification experience.

All recent research in this area, without exception, has so far proceeded in the opposite direction:
creating more impressive formalization and theoretical advancement first, and worry about
making them actually deployable last [9]. While this approach is certainly defensible and, in
academic research, sometimes strictly necessary, it has led to (in my opinion) some amount of
wasted effort and opportunity.

In designing Verifpal, I focused on ensuring that it offers the following:

• An intuitive language for modeling protocols. Verifpal’s internal logic still relies on the
deconstruction and reconstruction of abstract terms, similar to ProVerif. However, it
reasons about the protocol model with explicit principals: Alice and Bob exist, they have
independent states, they know certain values and perform operations with cryptographic
primitives. They send messages to each other over the network, and so on. The Verifpal
language is meant to illustrate protocols close to how one may describe them in an informal
conversation, while still being precise and expressive enough for formal modeling.

• Modeling that avoids user error. Verifpal does not allow users to define their own crypto-
graphic primitives. Instead, it comes with built-in cryptographic functions: ENC and DEC

representing encryption and decryption, AEAD_ENC and AEAD_DEC representing authenti-
cated encryption and decryption, SIGN representing asymmetric primitives, etc. — this is
meant to remove the potential for users to define fundamental cryptographic operations
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incorrectly3. Verifpal also adopts a global name-space for all constants and does not allow
constants to be redefined or assigned to one another. This enforces models that are clean
and easy to follow.

• Analysis output that’s easy to understand. ProVerif provides attack traces that illustrate
a deduction using session-tagged values in a chain of Horn clause deconstructions. As
Verifpal is analyzing a model, it outputs notes on which values it is able to deconstruct,
conceive of, or reconstruct. When a contradiction is found for a query, the result is related
in a readable format that ties the attack to a real-world scenario. This is done by using
terminology to indicate how the attack could have been possible, such as through a mayor-
in-the-middle on ephemeral keys.

• Integration with the developer’s workflow. Verifpal comes with a Visual Studio Code
extension that offers syntax highlighting, automatic formatting, live analysis, diagram
visualizations and much more, allowing developers to obtain insights on their model as
they are writing it.

When you use Verifpal, I expect you to be able to model protocols using a language that immedi-
ately makes sense to you. I expect you to receive insight that is immediately understandable, so
long as you know what a hash function is, what encryption is, how Diffie-Hellman and signatures
work, and a few other core details. I expect Verifpal to give everyone the means to not only
experiment with modeling protocols, but also to gain legitimate and novel insights through their
modeling.

For the true beginner, I suggest, as a companion to this manual, Serious Cryptography by Jean-
Philippe Aumasson, or Real-World Cryptography by David Wong. Both are wonderful books
that can help you understand the basics.

Like all heroes, Verifpal thrives in the midst of adventure. What protocols will you and Verifpal
venture within? What interesting discoveries will you make?

Nadim Kobeissi

July 27, 2019

3This is an example of how Verifpal fundamentally diverges from ProVerif when it comes to certain goals —
its focus on ease of use will allow ProVerif, for the foreseeable future, to provide more elaborate models due to, for
example, support for user-defined primitives.



michelle tan (artist)

Cardi Chow (Artist)

Low Zi Rong (Art Lead & Character Design)

Nadim Kobeissi (Writing, Storyboarding, Direction)

A new era is dawning on
verifCity.

Friendships, breakups, elections,
checkups, bank accounts...

Everything goes through a single
window into people's lives.

an era where everything
happens through
smartphones.

20xx20xx20xxVerifCityVerifCityVerifCity

OK, sure!

Cool!

See ya soon!



VerifCity's leader, mayor
n. d. middle, promised
everyone that their digital
lives would have full
privacy.

But instead, he poisoned
VerifCity's communication

protocols.

Ever since his election, people's
lives have been at risk of
exposure.
nobody knows where it's coming
from,or when it will stop.

Well, almost nobody.

Letting him monitor
everyone.

can't wait 2 see u

You make me feel alive.

Me too, sweethea
Let's kee

a secret



OK,
Every-

one!

Class
Dismissed!

By day, she is
a math teacher
at VerifCity
High School.

by night,
she is...

Verifpal,
the hero who
can expose
the mayor's
hidden
tyranny.



So,
have you
checked

if the
authen-
tication

is chained
down past

the key
exchange

mes-
sages?!

The long-term
keys have mutual
authentication!

But
proverif-sama!

A compromised
ephemeral key
can still mean
trouble.

Alice's ephemeral key...
it's the only thing
keeping her messages
safely encrypted...This is supposed

to be the secure
protocol
everyone is
using to
communicate...

I'm sure I've
modeled it
correctly...

So...

"But
something's
not right..."

years earlier...

No,
Verifpal.



Which

means...

They can read
everything!

if an active attacker
replaces the

ephemeral key,

the entire
session gets
compromised!

ENCRYPT

Master Secret

HKDF

HKDF
! Root Key

HKDF

Alice's
Ephemeral Key

Normally, message keys
are derived not
only from
Alice's
ephemeral key,
but also from
a root key...

This is what ties
the messages to

Alice and bob's
identities...

But... the root key is
never getting mixed
into Alice's new
message encryption key!

That's right!



Excellent
deduction
as always,
Verifgal!

Indeed, the key exchange
is quite worthless...

but did you think that
was the only ace up

my sleeve?!

mayor
N. D.

Middle!

No,
I didn't...



Even
if commu-
nications
were
confi-
dential...

Even
if commu-
nications
were
confi-
dential...

...you'd
still

learn
a lot
from

who's
talking

to who...

...isn't that,
mayor,

why you
don't...

...Encrypt the
initiator's
long-term
public key?!

IM-IMPOSSIB
LE!!!



Hero Rev
eals Com

municati
ons Surv

eillance

Interest i
n learnin

g formal
verificati

on spikes

Popula
tion co

nfused
as to h

ow na
me

was no
t suffic

ient tip
-off

City M
ayor A

rreste
d

for Su
rveilla

nce Pl
ot

The next day...

How
didn't

we
see

that?

Why
didn't

we
spot it?

the
encryption...

it wasn't
secure!

Secure
communi-
cations
are
critical
to
our
daily
lives...

...and
everyone
should be
able to
verify the
security
of these
designs.

My name is

together,
we can learn
formal
verification
for any
cryptographic
protocol!

It's nice to
meet you;

let's get
started!

!Verifpal



CONTENTS

I Getting Started with Verifpal 1

1 Setting Up Verifpal 2

1.1 Downloading Verifpal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Installing Verifpal Manually . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Running Verifpal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Updating Verifpal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Compiling Verifpal from Source Code . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Verifpal for Visual Studio Code . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Sharing Verifpal Models with VerifHub . . . . . . . . . . . . . . . . . . . . . 6

1.8 News and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Verifpal Language 7

2.1 Declaring the Attacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Principals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fundamental Types in Verifpal . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xv



2.6 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 A Simple Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Protocols and Queries in Verifpal 17

3.1 Use Cases and Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Passive and Active Attackers . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Understanding Verification Results . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Modeling a Challenge-Response Protocol . . . . . . . . . . . . . . . . . . . . 28

4 Analysis in Verifpal 29

4.1 Analysis Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Preventing State Space Explosion . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Soundness of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II Protocol Examples in Verifpal 35

5 Secure Messaging with Signal 36

5.1 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Principals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Queries and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Gossip with Scuttlebutt 43

6.1 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Principals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Queries and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



7 Contact Tracing with DP-3T 49

7.1 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Modeling DP-3T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 57

Appendix 59

Notes 63



part i

Getting Started with Verifpal

1



CHAPTER 1

SETTING UP VERIFPAL

Setting up Verifpal on your computer is easy, and should not take more than five minutes regardless
of your computer or operating system.

1.1 downloading verifpal

Verifpal is available for Microsoft Windows, Linux, macOS and FreeBSD. In order to download
Verifpal, simply visit https://verifpal.com and download the latest version for your computer.

On Windows, Verifpal is available via the Scoop1 package manager. On Linux and macOS,
Verifpal is available via the Homebrew2 package manager. Instructions for installing Verifpal
through Scoop or Homebrew are listed on the Verifpal website’s Software & Media page: https:
//verifpal.com/software.

Installing Verifpal via package manager is the best way to keep Verifpal automatically up to date.

As a reminder, Verifpal is free and open source software, available under the GNU General Public
License Version 3. To learn more about your rights and obligations under this license, please
review https://www.gnu.org/licenses/gpl-3.0.en.html.

1https://scoop.sh
2https://brew.sh

Verifpal is Beta Software
Verifpal now benefits from a higher level of assurance due to the

formalization of its syntax, semantics and analysis methodology, both by
hand and using the Coq theorem prover. However, it remains classified as
beta software due to its relatively young age, especially when compared
to similar tools, such as ProVerif [2], that have been in development for
more than twenty years.

2

https://verifpal.com
https://verifpal.com/software
https://verifpal.com/software
https://www.gnu.org/licenses/gpl-3.0.en.html
https://scoop.sh
https://brew.sh
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Figure 1.1: Verifpal in macOS.

1.2 installing verifpal manually

Verifpal is a command-line application. There is no specific procedure for installing it, although
adding it to your system’s command PATH may make it easier to use.

1.2.1 Windows

Running verifpal.exe directly by double-clicking it from the Explorer won’t do anything —
you will have to open a command-line terminal. The quickest way to do so would be to type
+ R to launch the Run dialog box, and then to type cmd.

Once inside a terminal, cd to the folder containing verifpal.exe.

1.2.2 Linux, macOS and FreeBSD

Simply open a terminal and cd to the folder containing verifpal. You may also wish to copy
Verifpal (using cp) to a folder within your system PATH. For example:

cp verifpal /usr/local/bin/verifpal

This will allow you to type verifpal from any folder on your system in order to quickly run
Verifpal.

1.3 running verifpal

Running verifpal should give the output seen in Figure 1.1. Some options are shown:

• verify: takes as a parameter a .vp file, containing a model for verification.

• translate: generates a ProVerif3 or Coq4 model based on the given Verifpal model, which
3https://proverif.inria.fr.
4https://coq.inria.fr.

https://proverif.inria.fr
https://coq.inria.fr
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may be useful for further analysis.

• pretty: outputs a pretty-printed version of the provided .vp model, potentially making it
more readable.

Once you are able to obtain the output shown in Figure 1.1, you have confirmed that Verifpal is
ready to go on your computer.

1.4 updating verifpal

Verifpal software is under continuous development. It is recommended that you periodically
visit https://verifpal.com to check if a new version of Verifpal is released. New versions can
bring improved performance, bug fixes and even new features.

To check which version of Verifpal you have installed, simply run verifpal with no arguments.
For example, the output shown in Figure 1.1 indicates that this is Verifpal version 0.1. Once
you’ve downloaded an updated copy of Verifpal, running and installing it should be possible
using the same process described within this chapter.

This Verifpal User Manual that you are reading now will also be updated in time. To check which
edition of the manual you currently have, simply consult the manual’s cover. Newer editions may
be available on the Verifpal website at https://verifpal.com.

1.5 compiling verifpal from source code

You may choose to compile Verifpal from source code instead of downloading a pre-compiled
release, although note that there is no significant advantage or difference between downloading
a pre-compiled Verifpal binary and compiling your own. Links to the Verifpal source code
repository are available on the Verifpal website.

Installing Git. You must have the Git distributed version control system installed on your
computer in order to download a copy of the Verifpal source code repository. Please Review the
Git Getting Started5 instructions in order to understand how to best install Git for your computer
and operating system.

Installing Go. You must have the Go programming language installed in order to build Verifpal.
Please Review the Go Getting Started6 instructions in order to understand how to best install Go
for your computer and operating system.

Installing Dependencies. Verifpal relies on the Pigeon PEG parser generator and on the Aurora
ANSI color printer as dependencies. Once you have installed Git and cloned the Verifpal
repository, simply type make dep in order to install Go dependencies required by Verifpal.

Compiling Verifpal. On Windows, simply type Build (or run the included Build.cmd script) to
build Verifpal for Windows, Linux, macOS and FreeBSD. This will also install dependencies.

5https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
6https://golang.org/doc/install

https://verifpal.com
https://verifpal.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://golang.org/doc/install
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On Linux, macOS and FreeBSD, simply type make all instead. Binaries will then be available
under the build/ folder.

1.6 verifpal for visual studio code

A Verifpal extension is also available for Visual Studio Code7.

Verifpal for Visual Studio Code offers the following features:

• Syntax highlighting for Verifpal models.

• Formatting for Verifpal models using the standard Visual Studio Code API, including
support for format-on-save.

• Immediate access to Verifpal documentation and code insights simply by hovering over
terms with your cursor.

• Live diagram visualizations of Verifpal models within Visual Studio Code.

• Live analysis of Verifpal models and visual results feedback within Visual Studio Code.

To install Verifpal for Visual Studio Code, simply search for it within the extensions search
functionality of your Visual Studio Code Editor.

Syntax highlighting will be available immediately on .vp files. To format a model, simply
right-click within the editor and select “Format Document”.

Hovering over primitives (such as HKDF or AEAD_ENC) will show documentation for these primitives.
Hovering over constants will show their assigned values and the name of the principal that created
them. Hovering over queries (such as confidentiality) will show a brief description of that
query’s syntax and functionality.

In order to show a diagram visualizing your protocol, open the Visual Studio Code Command
Palette (Ctrl+Shift+P on Windows and Linux, Cmd+Shift+P on macOS) and search for the
“Verifpal: Show Protocol Diagram” command.

In order to launch an analysis, open the Visual Studio Code Command Palette (Ctrl+Shift+P
on Windows and Linux, Cmd+Shift+P on macOS) and search for the “Verifpal: Run Attacker
Analysis” command. It is recommended that this feature not be used for models which take a
long time to be analyzed. Using Verifpal in the command line for more complex models will
likely yield a better workflow since you will not be able to edit your model while analysis is
running.

Verifpal for Visual Studio Code may be configured via the following options in your Visual
Studio Code User Settings file:

7Visual Studio Code is a free and open source code editor by Microsoft, available for download at https:
//code.visualstudio.com/. Verifpal for Visual Studio Code requires Verifpal 0.13.0 or higher to be installed for
all functionality to work correctly.

https://code.visualstudio.com/
https://code.visualstudio.com/
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• verifpal.enabled: enables or disables IDE features. (eg. true)

• verifpal.path: Sets the path for the Verifpal binary on your computer. (eg. /usr/bin/verifpal)8

1.7 sharing verifpal models with verifhub

VerifHub is a web-based service that allows Verifpal users to easily share and discuss Verifpal
models of cryptographic protocols. The VerifHub service provides unique URIs for each shared
model which includes a syntax-highlighted model, an automatically generated diagram and a
summary of the analysis results. Users may then share models and also discuss them using the
built-in VerifHub model discussion feature.

For more information on how to use VerifHub, please visit https://verifhub.verifpal.com.

1.8 news and discussion

Sign up to the Verifpal Mailing List9 in order to stay informed on the latest news and announce-
ments regarding Verifpal, and to participate in Verifpal-related discussions!

For more informal or immediate Verifpal discussion, please join the Verifpal Discord channel.10

8If you have installed Verifpal via the Snap Store, you will need to set verifpal.path to
/snap/verifpal/current/bin/verifpal.

9https://verifpal.com/list
10https://verifpal.com/discord

https://verifhub.verifpal.com
https://verifpal.com/list
https://verifpal.com/discord


CHAPTER 2

THE VERIFPAL LANGUAGE

Now that you’ve installed Verifpal, you’re ready to start describing the protocol you want to
verify.

The Verifpal language is the main expressive gateway between you and Verifpal. When describing
a protocol in Verifpal, you begin by defining whether the model will be analyzed under a passive
or active attacker. Then, you define the principals engaging in activity other than the attacker.
These could be Alice and Bob, and perhaps also Charlie. It could be a Server and one or more
Clients. It all depends on the protocol that you are describing.

Once you’ve described the actions of more than one principal, it’s time to illustrate the messages
being sent across the network. Perhaps Alice is initiating a session with Bob, and then sending an
encrypted message saying “hello!” — or perhaps a TLS connection is being initiated between a
Client and a Server, after which a web page is fetched. It’s up to you to model these interactions
using the Verifpal language.

After having illustrated the principals’ actions and their messages, you may finally describe
the queries, or “questions” that you will ask Verifpal. Can a passive attacker read Alice’s first
message to Bob? Or perhaps Alice can be impersonated by an active attacker! It’s Verifpal’s job
to help you find out.

2.1 declaring the attacker

First, we must define what kind of attacker Verifpal will use to analyze our model. The syntax for
this is pretty simple: attacker[passive] indicates a passive attacker, while attacker[active]

indicates an active attacker.

In Chapter 3, the differences between active and passive attacker are explained in more detail.
To summarize, a passive attacker is a malicious observer on the network that cannot inject or
modify messages. An active attacker however can modify messages at will, and inject their
own new messages in a bid to obtain as much information and as many different scenarios from
the protocol described as it is executed over the network. Their hope is that one of these bits of

7
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information, or that one of these scenarios, will allow them to find a contradiction to the queries
posed in the model with regards to the protocol.

2.2 principals

Let’s declare a principal Alice which knows the public constants c0, c1 and the private constant
m1, which will act as the secret message Alice will want to send to Bob later. Since c0 and c1

are declared as known publicly, they are immediately also known to the attacker. The same, of
course, is not true of m1. Alice also generates a random value a. She will use this value as her
private key.

New Principal: Alice

principal Alice[

knows public c0, c1

knows private m1

generates a

]

It’s that simple! Now, let’s proceed with Bob:

New Principal: Bob

principal Bob[

knows public c0, c1

knows private m2

generates b

gb = G^b

]

Notice how Bob also calculates gb = G^b. Here, gb is Bob’s public Diffie-Hellman key, while
G^b quite plainly indicates the standard Diffie-Hellman exponentiation gb. Later, Alice will be
able to write gb^a, which is how we illustrate gba in Verifpal.

2.3 fundamental types in verifpal

Verifpal has three fundamental types: constants, primitives and equations. A constant may have
qualifiers such as freshness (if declared using generates). Equations are in the form G^x^y.
Primitives are one of the various built-in functions in Verifpal, and are defined using Verifpal’s
internal primitive definition structure. All of these elements are touched upon below.

2.3.1 Constants

In the above examples, c0, c1, m1, m2, b, gb are all constants. Certain rules apply on con-
stants in Verifpal:

• Immutability. Once assigned, constants cannot be reassigned.
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• Global name-space. If Bob declares or assigns some constant c, Alice cannot declare a
constant c even if Bob declares or assigns his constant privately.

• No referencing. Constants cannot be assigned to other constants, but only to primitives or
equations.

These rules exist in order to encourage you to write Verifpal models that will hopefully be cleaner
and easier to read.

Let’s summarize the different ways that exist to declare constants, and how they differ from one
another:

• knows: A principal may be described as having prior knowledge of a constant. The qualifiers
private and public describe whether this constant that they have knowledge of is supposed
to be considered known by everyone else (including the attacker) or just by them. Constants
declared this way are considered to be, well, constant, across every execution of the protocol
(i.e. they are not unique for every different time the protocol is executed). A third qualifier,
password, can be used to declare private constants that are weak or guessable: if they are
used directly within, for example, an encryption primitive, and the ciphertext is obtained by
the attacker, the attacker will be able to obtain the password value immediately. Therefore,
in order to be used safely, values declared using knows password must first be sent through
a password hashing primitive such as PW_HASH.

• generates: This allows a principal to describe a “fresh” value, i.e. a value that is re-
generated every time the protocol is executed. A good example of this could be an ephemeral
private key. Such values (and all values derived using these values) are not kept between
different protocol session executions.

• leaks: This allows us to specify that the principal will leak an existing constant that they
already know to the attacker, rendering the value immediately knowable to the attacker at
the point of leakage.

• Assignment: A constant may be declared by assigning it to the result of a primitive or
equation expression. But remember: constants may not be assigned to other constants.

2.3.2 Primitives

In order to describe cryptographic protocols, we will of course need cryptographic primitives.

In Verifpal, cryptographic primitives are essentially “perfect”. That is to say, hash functions are
perfect one way functions, and not susceptible to something like length extension attacks. It is
also not possible to model for, say, encryption primitives that use 40-bit keys, which could be
guessed easily, since encryption functions are perfect pseudo-random permutations, and so on1.

Internally in Verifpal’s standard implementation, all primitives are defined using a common spec
called PrimitiveSpec which restricts how they can be expressed to a set of common rules. Aside

1That is, incidentally, the fundamental difference between tools like Verifpal, ProVerif and Tamarin, which
operate in the symbolic model, and software like CryptoVerif [4] which operates in the computational model. The
computational model allows CryptoVerif to capture ideas such as key length, which can make for more accurate
modeling in some instances.
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Simple Protocol

attacker[active]

principal Alice[

generates a

ga = G^a

]

Alice→ Bob: ga

principal Bob[

knows private m1

generates b

gb = G^b

ss_a = ga^b

e1 = AEAD_ENC(ss_a, m1, gb)

]

Bob→ Alice: gb, e1

principal Alice[

ss_b = gb^a

e1_dec = AEAD_DEC(ss_b, e1, gb)?

]

Figure 2.1: A complete example model of a simple protocol is shown on the left. On the right, a helpful
diagram is provided to illustrate how modeling in Verifpal works. The diagram on the right is not part of
Verifpal’s modeling language and is simply provided here as a visual aid.

from information such as the primitive’s names, arity and number of outputs, each PrimitiveSpec
defines a primitive solely via a combination of four standard rules:

• Decompose. Given a primitive’s output and a defined subset of its inputs, reveal one of its
inputs. (Given ENC(k, m) and k, reveal m).

• Recompose. Given a defined subset of a primitive’s outputs, reveal one of its inputs. (Given
a, b, reveal x if a, b, _ = SHAMIR_SPLIT(x)).

• Rewrite. Given a matching defined pattern within a primitive’s inputs, rewrite the primitive
expression itself into a logical subset of its inputs. (Given DEC(k, ENC(k, m)), rewrite
the entire expression DEC(k, ENC(k, m)) to m).

• Rebuild. Given a primitive whose inputs are all the outputs of some same other prim-
itive, rewrite the primitive expression itself into a logical subset of its inputs. (Given
SHAMIR_JOIN(a, b) where a, b, c = SHAMIR_SPLIT(x), rewrite the entire expression
SHAMIR_JOIN(a, b) to x).

Core Primitives

Verifpal offers the following “core” primitives, which perform basic operations that are not
necessarily cryptographic in nature, but still often useful in models:

• ASSERT(MAC(key, message), MAC(key, message)): unused.
Checks the equality of two values, and especially useful for checking MAC equality. Output
value is not used; see §2.3.2 below for information on how to validate this check.
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• CONCAT(a, b^^...): c.
Concatenates two or more values2 into one value. “Concatenation” is a word often used
in computer science to describe joining multiple strings or values together. For example,
the concatenation of the strings cat and dog would be catdog.

• SPLIT(CONCAT(a, b)): a, b.
Splits a concatenation back to its component values. Must contain a CONCAT primitive as
input; otherwise, Verifpal will output an error.

Hashing Primitives

Verifpal offers the following hashing primitives, which aim to capture classical cryptographic
hashing, keyed hashing and hash-based key derivation:

• HASH(a, b^^...): x.
Secure hash function, similar in practice to, for example, BLAKE2s [10].
Takes between 1 and 5 inputs and returns one output.

• MAC(key, message): hash.
Keyed hash function. Useful for message authentication and for some other protocol
constructions.

• HKDF(salt, ikm, info): a, b^^....
Hash-based key derivation function inspired by the Krawczyk HKDF scheme [11].
Essentially, HKDF is used to extract more than one key out a single secret value. salt and
info help contextualize derived keys. Produces between 1 and 5 outputs.

• PW_HASH(a^^...): x.
Password hashing function, similar in practice to, for example, Scrypt [12] or Argon2 [13].
Hashes passwords and produces output that is suitable for use as a private key, secret
key or other sensitive key material. Useful in conjunction with values declared using
knows password a.

Encryption Primitives

Verifpal offers the following encryption primitives, which aim to capture unauthenticated encryp-
tion, and authenticated encryption with associated data:

• ENC(key, plaintext): ciphertext.
Symmetric encryption, similar for example to AES-CBC or to ChaCha20.

• DEC(key, ENC(key, plaintext)): plaintext.
Symmetric decryption.

2The CONCAT primitive can be used to concatenate up to 5 values.
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• AEAD_ENC(key, plaintext, ad): ciphertext.
Authenticated encryption with associated data.
ad represents an additional payload that is not encrypted, but that must be provided exactly
in the decryption function for authenticated decryption to succeed. Similar for example to
AES-GCM or to ChaCha20-Poly1305.

• AEAD_DEC(key, AEAD_ENC(key, plaintext, ad), ad): plaintext.
Authenticated decryption with associated data.
See §2.3.2 below for information on how to validate successfully authenticated decryption.

• PKE_ENC(G^key, plaintext): ciphertext.
Public-key encryption.

• PKE_DEC(key, PKE_ENC(G^key, plaintext)): plaintext.
Public-key decryption.

Signature Primitives

Verifpal offers a simple signing primitive with a corresponding signature verification function:

• SIGN(key, message): signature.
Classic signature primitive. Here, key is a private key, for example a.

• SIGNVERIF(G^key, message, SIGN(key, message)): message.
Verifies if signature can be authenticated.
If key a was used for SIGN, then SIGNVERIF will expect G^a as the key value. Output value
is not necessarily used; see §2.3.2 below for information on how to validate this check.

• RINGSIGN(key_a, G^key_b, G^key_c, message): signature.
Ring signature.
In ring signatures, one of three parties (Alice, Bob and Charlie) signs a message. The
resulting signature can be verified using the public key of any of the three parties, and the
signature does not reveal the signatory, only that they are a member of the signing ring
(Alice, Bob or Charlie). The first key must be the private key of the actual signer, while
the subsequent two keys must be the public keys of the other potential signers.

• RINGSIGNVERIF(G^a, G^b, G^c, m, RINGSIGN(a, G^b, G^c, m)): m.
Verifies if a ring signature can be authenticated.
The signer’s public key must match one or more of the public keys provided, but the
public keys may be provided in any order and not necessarily in the order used during the
RINGSIGN operation. Output value is not necessarily used; see §2.3.2 below for information
on how to validate this check.

• BLIND(k, m): m.
Message blinding primitive, useful for the implementation of blind signatures. Here, the
sender uses the secret “blinding factor” k in order to blind message m, which can then be
sent to the signer, who will be able to produce a signature on m without knowing m. Used
in conjunction with UNBLIND – see UNBLIND’s documentation for more information.
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• UNBLIND(k, m, SIGN(a, BLIND(k, m))): SIGN(a, m).
Once BLIND(k, m) is signed by the signer, the sender can convert SIGN(a, BLIND(k, m))

to SIGN(a, m) by unblinding the message using their secret blinding factor k. The resulting
unblinded signature can then be used as if it were a regular signature by a over m.

Secret Sharing Primitives

Verifpal offers a simple interface for modeling Shamir Secret Sharing [14], which allows a secret
(such as a key) to be split into multiple shares such that only some (and not all) of these shares
are required to reconstitute it:

• SHAMIR_SPLIT(k): s1, s2, s3.
In Verifpal, we allow splitting the key into three shares such that only two shares are
required to reconstitute it.

• SHAMIR_JOIN(sa, sb): k.
Here, sa and sb must be two distinct elements out of the set (s1, s2, s3) in order to
obtain k.

Checked Primitives

In Verifpal, ASSERT, SPLIT, AEAD_DEC, SIGNVERIF and RINGSIGNVERIF are “checkable” primi-
tives: if you add a question mark (?) after one of these primitives, then model execution will abort
should AEAD_DEC fail authenticated decryption, or should ASSERT fail to find its two provided
inputs equal, or should SIGNVERIF fail to verify the signature against the provided message and
public key.

For example: SIGNVERIF(k, m, s)? makes this instantiation of SIGNVERIF a “checked” primi-
tive.

If you are analyzing under a passive attacker, then Verifpal will only execute the model once.
Therefore, if a checked primitive fails, the entire verification procedure will abort. Under an active
attacker, however, Verifpal is forced to execute the model once over for every possible permutation
of the inputs that can be affected by the attacker. Therefore, a failed checked primitive may not
abort all executions — and don’t forget, messages obtained before the failure of the checked
primitive are still valid for analysis, perhaps even in future sessions. For more information on
this, see Chapter 3.

2.3.3 Equations

Equations are special expressions intended to capture public key generation (useful for both
Diffie-Hellman and signatures), as well as shared secret agreement (useful for Diffie-Hellman).

As we saw earlier, G^a indicates the public key obtained from value a. This public key can be
used both for signing primitives as well as for Diffie-Hellman shared secret agreement. Let’s
look at some other example equations in Verifpal:
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When to Check Primitives
Inevitably, checking every single checkable primitive in your model

will lead to fewer attacks on your protocols being found, especially under
an active attacker. But is it always accurate to model your protocol this
way?

Unchecking certain primitives can make it easier for you to illustrate
what could happen if protocol implementations ignore certain real-world
“checks”, and can lead to some interesting new insights!

Example Equations

principal Server[

generates x

generates y

gx = G^x

gy = G^y

gxy = gx^y

gyx = gy^x

]

In the above, gxy and gyx are considered equivalent by Verifpal. In Verifpal, all equations must
have the constant G as their root generator. This mirrors Diffie-Hellman behavior. Furthermore,
all equations can only have two constants (a^b), but as we can see above, equations can be built
on top of other equations (as in the case of gxy and gyx).

2.4 messages

Sending messages over the network is simple. Only constants may be sent within messages:

Example: Messages

Alice→ Bob: ga, e1

Bob→ Alice: [gb], e2

Let’s look at the two messages above. In the first, Alice is the sender and Bob is the recipient.
Notice how Alice is sending Bob her long-term public key ga = G^a. An active attacker could
intercept ga and replace it with a value that they control. But what if we want to model our
protocol such that Alice has pre-authenticated3 Bob’s public key gb = G^b? This is where
guarded constants become useful.

In the second message from the above example, we see that, gb is surrounded by brackets ([]).
This makes it a “guarded” constant, meaning that while an active attacker can still read it, they
cannot tamper with it. In that sense it is “guarded” against the active attacker.

3“Pre-authentication” refers to Alice confirming the value of Bob’s public key before the protocol session
begins. This helps avoid having an active attacker trick Alice to use a fake public key for Bob. This fake public key
could instead be the attacker’s own public key. We call this a Mayor-in-the-Middle attack.
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Guarding the Right Constants
Verifpal allows you to guard constants against modification by the

active attacker. However, guarding all of a principal’s public keys, for
example, might not reflect real-world attack scenarios, where keys are
rarely guarded from being modified as they cross the network.

What interesting new insights will you discover using guarded con-
stants?

2.5 phases

Phases allow Verifpal to reliably model post-compromise security properties such as forward
secrecy or future secrecy. When modeling with an active attacker, a new phase can be declared
thus:

Example: Phases

principal Alice[...]

principal Bob [...]

Bob→ Alice: b1

phase[1]

principal Alice[leaks a2]

In the above example, the attacker won’t be able to learn a2 until the execution of everything that
occurred in phase 0 (the initial phase of any model) is concluded. Furthermore, the attacker can
only manipulate a2 within the confines of the phases in which it is communicated. That is to
say, the attacker will have knowledge of b1 when doing analysis in phase 1, but won’t be able to
manipulate b1 in phase 1. The attacker won’t have knowledge of a2 during phase 0, but will be
able to manipulate b1 in phase 0.

Values are learned at the earliest phase in which they are communicated, and can only be
manipulated within phases in which they are communicated, which can be more than one phase
since Alice can for example send a2 later to Carol, to Damian, etc. Importantly, values derived
from mutations of b1 in phase 0 cannot be used to construct new values in phase 1.

Phases are useful to model scenarios where, for example, the attacker manages to steal Alice’s
keys strictly after a protocol has been executed, allowing the attacker to use their knowledge of
that key material, but only outside of actually injecting it into a running protocol session.

2.6 queries

A Verifpal model is always concluded with a queries block, which contains essentially the
questions that we will ask Verifpal to answer for us as a result of the model’s analysis. Queries
have an important role to play in a Verifpal model’s constitution. The Verifpal language makes
them very simple to describe, but you may benefit from learning more on how to properly use
them in your models. For more information on queries, see Chapter 3. §2.8 below shows a quick
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example of how to illustrate queries in your model.

2.7 comments

At any point in your model, you may insert comment lines by prepending them with a double
backslash (^//). Comments are useful to include notes for yourself or others reading your model.

2.8 a simple complete example

Figure 2.1 provides a full model of a naïve protocol where Alice and Bob only ever exchange
unauthenticated public keys (G^a and G^b). Bob then proceeds to send an encrypted message to
Alice using the derived Diffie-Hellman shared secret to encrypt the message. We then want to
ask Verifpal the following questions:

1. Can the attacker obtain the ciphertext?

2. Can the attacker obtain the plaintext?

3. Can the attacker impersonate Bob and deliver a tampered ciphertext to Alice that neverthe-
less still authenticates?

4. Are the shared secrets that are derived between Alice and Bob always equivalent?

Example: Queries

queries[

confidentiality? e1

confidentiality? m1

authentication? Bob→ Alice: e1

equivalence? ss_a, ss_b

]

Under a passive attacker, the answers would be “yes”, “no” and “no”. Under an active attacker,
the answer to all three questions would be “yes”. Can you figure out why? If not, no need to
worry: in Chapter 3, we will learn more about how the Verifpal attacker behaves when analyzing
a model. In Chapter 4, we will cover common considerations protocol designers face when
building a protocol for a particular use case.



CHAPTER 3

PROTOCOLS AND QUERIES IN VERIFPAL

So far, this manual has assumed that you have an understanding of the kind of thinking that
determines the design of a cryptographic protocol: the use cases, the security goals, the principals
involved. In this chapter, we will go through these concepts again, as they are central to a complete
understanding of Verifpal.

Protocol designers are skilled craftspeople. When Trevor Perrin and Moxie Marlinspike looked
at secure messaging protocols, they decided that none of them were good enough: if Alice and
Bob were communicating over WhatsApp, they deserved that their messages would remain safe
across the wire even if Alice’s phone were to be stolen. In creating the Signal protocol, they
achieved the highest level of security publicly available for secure messaging, and by making
their protocol design open and efficient, ensured that it would be implemented across billions of
devices.

Similarly, when Jason Donenfeld looked at existing VPN solutions, he found protocols that had
to deal with decades of outdated cryptography, dozens of different versions and configurations
(many of them insecure) spread across tens of thousands of lines of code. In designing WireGuard,
he was able to capture security goals more ambitious and advanced than those captured by any
other mainstream VPN solution, and in code that was a fraction of the size.

When Eric Rescorla led the TLS 1.3 effort, he was able to conduct a worldwide community
towards agreeing on a new standard for encrypting the majority of web communications, doing so
in a way that eliminated attacks discovered by tools similar to Verifpal and making the protocol
itself simpler at the same time.

All a protocol designer has to do is capture an elegant construction and illustrate it once. If it
is shown to satisfy their chosen security goals, then it can immediately become a benefit to the
privacy and safety of billions of people across the world. Wouldn’t it be amazing if you could
learn how to think like these pioneers? Let’s take a look at how we can use Verifpal to prototype
our own protocols.

17
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Are You Sure It’s Private?
It might be tempting to mark a declared value as private; but is

it really? You could declare a key embedded into a smartphone as
knows private builtInKey, but it might not be so private if that
smartphone’s hardware is reverse engineered. Be careful when declaring
values as private, and only do so when you’re sure they will be. Otherwise
you might model your protocol as stronger than it truly is.

3.1 use cases and security goals

Naturally, the first thing you want to consider when designing a protocol is the use case. Will it
be a protocol for encrypting and authenticating phone calls, such as DTLS-SRTP? Will it be a
protocol for encrypted video chat, such as WebRTC? Or maybe you’re looking to test out your
new protocol for communications between an ATM and its host bank. In a world where even
refrigerators and toasters are connecting to the Internet, there certainly is no shortage of use cases
to consider.

Once you’ve determined your use case, you will need to determine the principals and the security
goals that they are supposed to benefit from by engaging in your protocol. “Principals” is just
a fancy word for “parties involved in your protocol.” In a secure messenger, that’s Alice and
Bob. In a secure group chat, however, that could go from Alice and Bob all the way to Yvonne
and Zachary. In HTTPS, you’ve got the old client (your browser) and server (the website you’re
connecting to.) And so it goes.

Once you’ve identified your principals, it’s important for you to be very clear about what your
expectations are with regards to their security goals. Sure, you could expect communications
between client and server to be confidential against an active attacker, but would that hold if the
server were to be impersonated by an attacker? If you’re hoping for that to be true, then you better
check for message authentication as well.

It is possible that the protocol you are modeling has sessions that could go in an arbitrary number
of directions. Take for example group secure messaging protocols, where Alice, Bob, Charlie
and Danielle are communicating in an end-to-end encrypted group. Will you model Alice as
sending a message, with Bob then replying? Will you model Danielle sending three messages
in a row without anyone responding? How does Danielle doing so affect the forward secrecy
guarantees of these messages? Are they as secure as the messages Danielle could have sent, had
she waited to first receive a reply from someone else in the group (which could also contain fresh
key material)? What about Evan, a fifth participant, who joins the group chat halfway through. Is
he able to read communications sent before he joined? Is that a desired property of the protocol?

In Verifpal models, you will be constrained to modeling one protocol execution scenario: in such
circumstances, it might be worthwhile to have different models for the same protocol, illustrating
situations where different events occur in a different order. By applying the same queries across
different models covering different scenarios, you can better understand how your protocol holds
up in different circumstances.
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Example Queries

queries[

confidentiality? m1

authentication? Alice→ Bob: e1

]

Figure 3.1: Example confidentiality and authentication queries.

3.2 queries

In Chapter 2, we saw how the Verifpal language allows us to describe protocols simply and clearly.
Once we’ve written our protocol down, however, analysis must begin: it’s time to ask Verifpal
the hard questions we want answered about the security of our design.

By defining queries, we will be able to formulate the questions we have regarding our protocol so
that Verifpal can understand them. Then, by reading the output of the analysis under an active or
a passive attacker, we can learn more about the properties and limitations of the protocol that
we have described. Does your protocol really protect the confidentiality of messages from an
active attacker? In what situations does it allow a malicious interceptor to impersonate one of the
parties? Queries are how we ask Verifpal these questions, and the goal of protocol analysis is to
obtain useful and insightful answers.

In Figure 3.1, we see two different types of queries. Let’s go in depth into what each of them
means and how we can use them to test for different properties.

3.2.1 Confidentiality Queries

Confidentiality queries are the most basic of all Verifpal queries. In the example confidentiality
query shown in Figure 3.1, we ask: “can the attacker obtain m1?” — where m1 is a sensitive
message. If the answer is yes, then the attacker was able to obtain the message, despite it being
presumably encrypted.

A passive attacker would have to rely on the encryption key for m1’s ciphertext e1 being somehow
communicated on the network, whether explicitly or in terms of its components, in order to obtain
m1. An active attacker, however, could have replaced the Bob’s public keys as they were sent to
Alice, before Alice could use them to encrypt m1. Read on to §3.3 to learn more.

3.2.2 Authentication Queries

Authentication queries are a bit trickier than confidentiality queries. In the example authentication
query shown in Figure 3.1, we ask: “if Bob successfully decrypts and authenticates e1, does that
necessarily mean that Alice sent e1 to Bob?” The implication is that if the attacker was able to
successfully convince Bob to validate the decryption of e1, then an impersonation attack could
have occurred where the attacker was able to impersonate Alice.

Authentication queries rely heavily on Verifpal’s notion of “checked” or “checkable” primitives,
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Example Freshness Query

attacker[active]

principal Alice[

knows private a

generates b

ha = HASH(a)

hb = HASH(b)

]

Alice→ Bob: ha, hb

principal Bob[

knows private a

_ = ASSERT(ha, HASH(a))

]

queries[

freshness? ha

freshness? hb

]

Figure 3.2: Example freshness queries.

as defined in §2.3.2.

Intuitively, the goal of authentication queries is to ask whether Bob will rely on some value e1 in
an important protocol operation (such as signature verification or authenticated decryption) if and
only if he received that value from Alice. If Bob is successful in using e1 for signature verification
or a similar operation without it having been necessarily sent by Alice, then authentication is
violated for e1, and the attacker was able to impersonate Alice in communicating that value.

Note that we don’t check for the authentication of plaintext m1 — that is because m1 is only
obtainable by Bob once decryption succeeds, which only happens if AEAD_DEC is successfully
re-writable back into the input values to AEAD_ENC, i.e. if the primitive passes the check.

In Figure 3.4, we see authentication queries applied not only to messages exchanged between
Alice and Bob, but also to Bob’s “signed pre-key”1.

3.2.3 Freshness Queries

Freshness queries are useful for detecting replay attacks, where an attacker could manipulate one
message to make it seem valid in two different contexts. In passive attacker mode, a freshness
query will check whether a value is “fresh” between sessions (i.e. if it has at least one composing
element that is generated, non-static). In active attacker mode, it will check whether a value
can be rendered “non-fresh” (i.e. static between sessions) and subsequently successfully used
between sessions. In Figure 3.2, the first freshness query will be contradicted, while the second
will not.

1For more information on what a “signed pre-key” is and how the Signal protocol works, see Chapter 5.
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3.2.4 Unlinkability Queries

Protocols such as DP-3T (see Chapter 7), voting protocols and RFID-based protocols posit an
“unlinkability” security property on some of their components or processes. Definitions for
unlinkability vary wildly despite the best efforts of researchers, but in Verifpal, we adopt the
following definition: “for two observed values, the adversary cannot distinguish between a
protocol execution in which they belong to the same user and a protocol execution in which they
belong to two different users.”

Based on the above, Verifpal introduced in version 0.12.0 experimental support for a notion of
unlinkability based on the following checks. For an unlinkability query evaluating two values a
and b:

• First, Verifpal checks to see if a and b satisfy freshness. If they do not, the query fails.
Similarly to regular freshness queries, if an attacker can coerce a value to be non-fresh
across sessions, then it is non-fresh and the query fails.

• If a and b both satisfy freshness, Verifpal then checks to see if the attacker can determine
them as being the output of the same primitive or as having a common source. For example,
the first and second output of the same HKDF construction with the same inputs. Of course,
a and b can indeed be the outputs of that HKDF and be unlinkable; unless the attacker is able
to reconstruct that same HKDF primitive and thereby use it to determine that both values are
the outputs of it.

It is likely that these two notions are not sufficient to fully capture unlinkability between values,
and future versions of Verifpal may expand this definition with additional notions, which will be
similarly documented within this User Manual. Figure 3.3 shows an example of a model with
three unlinkability queries. Verifpal will only be able to contradict the first two queries.

3.2.5 Equivalence Queries

For many protocols, it could be useful to check whether shared secrets derived between Alice
and Bob are equivalent in all completed executions of the protocol. Equivalence queries check
whether any protocol scenario can be derived such that the given values are not equivalent to one
another. §2.8 shows an example of an equivalence query in action.

3.2.6 Advanced Security Goals

In addition to confidentiality and authentication, Verifpal is able to model for an advanced security
goal known as key compromise impersonation.

Many protocols, including Signal and WireGuard, assume that if Alice’s long-term keys are
compromised, then the attacker may impersonate her to others. This is a natural and expected
assumption: the goal of long-term keys is to provide a sense of permanent identity to their
owner. However, in protocols suffering from a key compromise impersonation vulnerability,
compromising Bob’s long-term keys also allows the attacker to impersonate Alice to Bob. One
such protocol is Signal, and you can learn more about how key compromise impersonation is
modeled using Verifpal in Chapter 5.
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Example Unlinkability Query

attacker[active]

principal Alice[

generates b

]

Alice→ Bob: b

principal Bob[

knows private a

generates c

generates d

leaks c

h1, h2, h3 = HKDF(a, b, nil)

h4, h5, h6 = HKDF(c, c, nil)

h7, h8, h9 = HKDF(a, c, d)

]

queries[

unlinkability? h1, h2, h3

unlinkability? h4, h5, h6

unlinkability? h7, h8, h9

]

Figure 3.3: Example unlinkability queries.

And what about ephemeral keys? In the protocols we’ve considered and cited so far, the goal of
ephemeral keys is to provide security properties known as forward secrecy and post-compromise
security [6]. The former asks the question: “does stealing Alice’s device allow the thief to decrypt
messages she sent in the past?”, while the latter asks the same question about the future, roughly
speaking.

Verifpal currently supports basic forward secrecy checks using phases, which are discussed in
§2.5. Chapter 5 shows an analysis of forward secrecy properties in the Signal secure messaging
protocol.

3.2.7 Query Options

Imagine that we want to check, in the following model, if Alice will only send some message to
Carol if it has first authenticated it from Bob:
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Figure 3.4: Verifpal results for a model of the Signal protocol. Here, we did not bother to guard Alice or
Bob’s long-term keys. Therefore, despite a correct execution of the protocol and despite “checking” all
signature verifications, the attacker was able to find contradictions to all queries.
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Query Options Example

attacker[active]

principal Bob[

knows private psk

generates m

e = ENC(psk, m)

h = MAC(psk, e)

]

Bob→ Alice: e, h

principal Alice[

knows private psk

_ = ASSERT(MAC(psk, e), h)?

m2 = DEC(psk, e)

]

Alice→ Carol: [m2]

principal Carol[

_ = HASH(m2)

]

This can be accomplished by adding the precondition option to the authentication query for e:

Query Options Example (Cont.)

queries[

authentication? Bob→ Alice: e[

precondition[Alice→ Carol: m2]

]

]

The above query essentially expresses: “The event of Carol receiving m2 from Alice shall only
occur if Alice has previously received and authenticated an encryption of m2 as coming from
Bob.”

This syntax allows us to obtain some insight on the communication of m2 based on the result of
other queries, and to also link the authentication of that communication on the authentication
of other values, which can be important when m2 is being communicated as a guarded constant,
which is the case in the above.

Right now, precondition is the only available kind of query option, but other kinds of query
options may be added in future releases of Verifpal.

3.3 passive and active attackers

Verifpal’s goal is to obtain as many values as it is logically possible from their viewpoint as an
attacker on the network. As a passive attacker, Verifpal can only do this by deconstructing the
values made available as they are shared between principals, and potentially reconstructing them
into different values. As an active attacker, Verifpal can modify unguarded values as they cross
the network. Each modification could result in learning new values, so an unbounded number
of modifications can occur over an unbounded number of protocol executions. “Fresh” (i.e.
generated) values are not kept across different protocol executions, as they are assumed to be
different for every session of the protocol.
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An active attacker can also generate their own values, such as a key pair that they control, and
fabricate new values that they use as substitutes for any unguarded values sent between principals.
If, during a protocol execution, a checked primitive fails, that session execution is aborted and
the attacker moves on to the next one. However, values obtained thus far in that particular session
execution are kept.

Verifpal also keeps track of which values are used where, the path a value takes until it arrives
into the state of a principal, and who first declared or generated a value. This information is used
in order to analyze for contradictions to authentication queries.

While analysis under a passive attacker may seem restricted, it is sometimes useful to be able to
consider this weaker attacker model in order to model for circumstances and use cases where
we do not expect our system to ever be under active attack. For example, an air-gapped2 control
center for a nuclear power plant could be reasonably analyzed under a passive attacker, since all
principals could be assumed to have obtained some high-level security clearance.

Let’s review the more serious capabilities granted to an active attacker:

Modifying values within messages. An active attacker can replace e1 with e2 or anything else
that it chooses as that value is being sent in a message from Alice to Bob. While that would result
in Bob receiving the modified value, note that Alice’s state would still indicate her possession of
an intact e1, since an active attacker cannot influence the local state of any principal. Note that,
as described in §2.4, an active attacker is unable to modify any guarded constants as they are sent
within messages, despite being able to read them.

Crafting and injecting malicious values. An active attacker can also choose to replace Alice’s
public key G^a with their own crafted public key G^attacker, where the attacker has generated
and controls attacker. In many protocols, including the one described earlier in §2.8, this can
have disastrous consequences.

Executing an unbounded number of sessions. An active attacker can run the protocol an unbounded
number of times. Not only that, but the attacker can also keep information learned in previous
protocol executions and re-use it in future executions. There is one exception to this: if a learned
value is composed of at least one generated value (declared using generate, see §2.3.1), then it
cannot be kept across protocol executions, since that component is assumed to be randomly and
freshly generated each session.

Active attacker analysis is more likely to resemble the threat model of the protocol you are analyz-
ing: it applies to any reasonable analysis of HTTPS, secure messaging, VPN, SSH communication
and much more.

When analyzing under an active attacker, guarded constants and checked primitives become much
more important to employ correctly. For example, you may want to make sure that when Alice
and Bob exchange long-term public keys, these values are guarded against modification against
an active attacker. This is how we can model mutual authentication in Verifpal. You may also
want to check certain signature verification (SIGNVERIF) or authenticated decryption (AEAD_DEC)
operations such that the protocol aborts if they fail. Chapter 5 talks more about these scenarios

2“Air-gapped” is a term used to describe a system that is cut off or isolated from any other system or network.
For example, a computer network can be considered air-gapped if it is only accessible via a single physical
keyboard, not connected to the Internet, etc.
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Results and Scenarios
Suppose for example that you model an authentication query for a

message that Alice sends to Bob, and which Bob never reads. No contra-
dictions are found — this surprises you! Does it mean the message was
authenticated despite Bob not reading it? No! What Verifpal is trying to
say is that no scenario was found in which Bob reads an unauthenticated
message. Remember: queries without contradictions mean that no con-
tradicting scenarios were found.

in detail, since they are salient to our analysis of Signal in Verifpal.

3.4 understanding verification results

Figure 3.4 gives us the results of Verifpal’s analysis of Signal, with no mutual authentication of
Alice and Bob’s long-term public keys, and with only SIGNVERIF as a checked primitive. Let’s
try to understand what the results shown in Figure 3.4 mean for each query.

• confidentiality? m1: An active attacker was able to decrypt m1 since they can imper-
sonate both Alice and Bob due to their not authenticating their long-term public keys3 (or
expressing that authentication using guarded constants).

• authentication? Bob → Alice: gbs: Here, Verifpal is telling us that Bob’s signed pre-
key could have been signed by an active attacker instead using a signing private key that
they control. The active attacker could then substitute Bob’s long-term signing public key
with their own as it is being sent to Alice, leading Alice to successfully verify the signature
under the malicious public key.

• authentication? Alice → Bob: e1: Since the active attacker is able to decrypt e1 as
well as fully impersonate Alice to Bob due to a full mayor-in-the-middle attack, then the
attacker could have sent their own m1 or replacement message value, thereby making it
appear as if this message was sent by Alice whereas that is not necessarily the case.

• confidentiality? m2: Similarly to m1, an active attacker was able to decrypt m2 due to
their ability to fully impersonate both parties.

• authentication? Bob → Alice: e2: Since the active attacker is able to decrypt e2 as
well as fully impersonate Bob to Alice due to a full mayor-in-the-middle attack, then the
attacker could have sent their own m2 or replacement message value, thereby making it
appear as if this message was sent by Bob whereas that is not necessarily the case.

Had we guarded Alice and Bob’s long-term public keys in our model, the results of this analysis
would have been markedly different; we will look into this in detail in Chapter 5.



CHAPTER 3. PROTOCOLS AND QUERIES IN VERIFPAL 27

Challenge-Response Protocol

attacker[active]

principal Server [

knows private s

gs = G^s

]

principal Client[

knows private c

gc = G^c

generates nonce

]

Client→ Server: nonce

principal Server[

proof = SIGN(s, nonce)

]

Server→ Client: gs, proof

principal Client[

valid = SIGNVERIF(gs, nonce, proof)

generates attestation

signed = SIGN(c, attestation)

]

Client→ Server: [gc], attestation, signed

principal Server[

storage = SIGNVERIF(gc, attestation, signed)?

]

queries[

authentication? Server→ Client: proof

authentication? Client→ Server: signed

]

Figure 3.5: A simple challenge-response protocol in Verifpal.
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3.5 modeling a challenge-response protocol

Figure 3.5 shows a simple challenge-response protocol written in Verifpal. While it is demon-
strated here as a complete protocol, challenge-response mechanisms are a common component
of many larger protocols. The goal here is to for Client to challenge Server to prove ownership of
a signing key pair (s, gs = G^s). Client decides to do this by generating a random nonce4 that
it then sends to Server. The challenge is for Server to produce a valid signature for that nonce
using s, thereby proving that they own gs. Since the Server cannot choose or predict nonce, they
are forced to use the value provided by Client.

Does Figure 3.5 correctly capture this challenge-response mechanism? The answer is no: there
are two missing elements to this model before it is correct. Can you determine what they are?

First, if we analyze this protocol as it is described in Verifpal, then Client will send valid to the
server whether or not SIGNVERIF succeeds. Therefore, we must check5 SIGNVERIF by adding a ?

at the end of that line. Now, Client will not send valid unless signature verification passes.

Second, nothing is preventing an active attacker from conducting a mayor-in-the-middle attack
and replacing gs = G^s with gs = G^a_0, where a_0 is a private signing key controlled by
the attacker. Therefore, we can conclude that this challenge-response protocol is only secure
against an active attacker if gs is guarded as it is transmitted from Server to Client. Marking
gs as a guarded constant6 makes it impossible for the value to be replaced by an active attacker.
Practically, it implies that Client has pre-authenticated Server’s signing public key.

Such considerations help illustrate the sort of thing you’ll need to watch out for when designing,
modeling and analyzing protocols. In Part II of this manual, we will look at how tweaking existing
models, once they are written, allows us to quickly prototype our protocol in slightly different
scenarios and to see whether they same security goals are achieved.

3(a3dh, asig) represents Alice’s long-term Diffie-Hellman and signing private keys, while
(b3dh, bsig) represents Bob’s.

4“Nonce” is a common term used in cryptography to indicate a randomly chosen value that is never used more
than once — i.e. a number used once.

5See §2.3.2 for more information on checked primitives.
6See §2.4 for more information on guarded constants.
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ANALYSIS IN VERIFPAL

Verifpal is a protocol verifier; unlike some other automated formal verification tools [4], it does
not produce game-based proofs of the protocols that it analyzes. Instead, it digests models
representing the execution of a protocol under a very specific scenario enacted by principals
that act in a specific way. Verifpal’s goal is to then attempt to find contradictions to the queries
presented by the user. In order to do this, it follows a specific formalized analysis methodology.

4.1 analysis methodology

Verifpal’s active attacker analysis methodology (Figure 4.1) follows a simple set of procedures
and algorithms. The overall process is comprised of five phases:

1. Gather values. Attacker passively observes a protocol execution and gathers all values
shared publicly between principals.

2. Insert learned values into attacker state. Attacker’s state (VA) obtains newly learned
values.

3. Apply transformations. Attacker applies the four main “transformations” on all obtained
values (these transformations are detailed below.)

4. Prepare mutations for next session. If the attacker has learned new values due to the
transformations executed in the previous step, they create a combinatorial table of all
possible value substitutions, and from that, derive a set of all possible value substitutions
across future executions of the protocol on the network.

5. Iterate across protocol mutations. Attacker proceeds to execute the protocol across
sessions, each time “mutating” the execution by mayor-in-the-middling a value. Attacker
then returns to step 1 of this list. The process continues so long as the attacker keeps
learning new values.

After each phase, Verifpal checks to see if it has found a contradiction to any of the queries

29
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Figure 4.1: Verifpal analysis methodology. On the left, the three fundamental types usable in Verifpal
models are illustrated. As noted in §2.3, all cryptographic primitives are defined via a standard Primi-
tiveSpec structure, which adapts a primitive’s definition via a combination of four rules. On the right, a
model analysis is illustrated: first, the Verifpal model is parsed and translated into a global immutable
“knowledge map” structure from which a “principal state” is derived for each declared principal. Based
on the messages exchanged between these principal states, the attacker obtains values to which it can
apply the four transformations discussed. The attacker keeps doing this until it is unable to learn new
values, at which point it mutates the model in each possible way while still following the optimization
heuristics touched upon in §4.2. At the bottom, we see a description of the envisioned workflow implicit
to using Verifpal in production.

specified in the model and informs the user if such a contradiction is found. The four main
transformations mentioned above are the following:

• Resolve. Resolves a certain constant to its assigned value (for example, a primitive or an
equation). Executed on VA, the set of all values known by the attacker.

• Deconstruct. Attempts to deconstruct a primitive or an equation. In order to deconstruct
a primitive, the attacker must possess sufficient values to satisfy the primitive’s rewrite
rule. For example, the attacker must possess k and e in order to obtain m by deconstructing
e = ENC(k, m) with k. In order to reconstruct an equation, the attacker must similarly
possess all but one private exponent. Executed on VA, the set of all values known by the
attacker.

• Reconstruct. Attempts to reconstruct primitives and equations given that the attacker
possesses all of the component values. Executed on VA, the set of all values known by the
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attacker, as well as on VP, the values known by the principal whose state is currently being
evaluated by the attacker.

• Equivalize. Determines if the attacker can reconstruct or equivalize any values within VP
from VA. If so, then these equivalent values are added to VA.

4.2 preventing state space explosion

A common problem among symbolic model protocol verifiers is that for complex protocols,
the space of the user states and value combinations that the verifier must assess becomes too
large for the verifier to terminate in a reasonable time. Verifpal optimizes for this problem
via certain heuristic techniques: first, Verifpal separates its analysis into a number of stages in
which it gradually allows itself to modify more and more elements of principals’ states. Only in
later stages are the internal values of certain primitives (which are labeled “explosive” in their
PrimitiveSpec) mutated. Verifpal also imposes other restrictions, such as limiting the maximum
number of inputs and outputs of any primitive to five. Thus, Verifpal achieves unbounded state
analysis, similarly to ProVerif, but also applies a set of heuristics that are hopefully more likely to
achieve termination in a more reasonable time for large models (such as those seen for TLS 1.3
or Signal with more than three messages). Verifpal also leverages multi-threading and other such
techniques to achieve faster analysis. Verifpal’s stages segment its search strategy in essentially
the following way, with the aim to hold back infinite mutation recursion depth as far as possible,
unless queries cannot be contradicted without it:

• Stage 1: All of the elements of passive attacker analysis, plus constants and equation
exponents may be mutated to nil only and not to each other (for equations, this means that
g^a mutates to g^nil but not to g^b).

• Stage 2: All of the elements of Stage 1, plus non-explosive primitives are mutated but
without exceeding a call depth that is pre-determined in relation to the way in which they
were employed by principals in the Verifpal model. For example, HASH(HASH(x)) will
not mutate to HASH(HASH(HASH(y))) (since the call depth is deeper in the mutation), and
ENC(HASH(k), G^y) will not mutate to ENC(PW_HASH(k), k) (since the “skeleton” of the
original primitive does not employ PW_HASH, but HASH, and employs an equation (G^y) as
the second argument and not a constant (k)).

• Stage 3: All of the elements of Stage 2, with the inclusion of explosive primitives.

• Stage 4: All of the elements of Stage 3, with the addition of constants and equation
exponents being replaced with one another and not just nil.

• Stage 4 and beyond: All of the elements of Stage 3, with the addition of primitives being
allowed a mutation depth of n− 3 where n represents the current Stage, so long as the
resulting mutations have the same “skeleton” as defined in Stage 2.

4.3 soundness of results

Verifpal has so far been used in order to model TLS, Signal, Scuttlebutt, Telegram, ProtonMail
and some other protocols. So far, all of its results have been in line with previous analyses of
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these protocols. But anecdotal evidence is not sufficient in order to declare with full confidence
that Verifpal qualifies as a proven formal verification framework.

In this section, we present an outline of Verifpal’s formal analysis methodology (in addition to
the formalized semantics and analysis logic of the Verifpal Coq Library), such that we can say
with a high degree of confidence that:

• If an attacker is unable to obtain a value m, then Verifpal will answer that the query passes
for the protocol described in the Verifpal model.

• If an attacker cannot find more than one way in which value e can be communicated
between principals A and B such that B later employs e as an argument to a rewrite-capable
primitive or equation, then e will be deemed as authenticated under A → B for the protocol
described in the Verifpal model.

Formally, Verifpal is unable to claim that it never misses an attack in any model that can be
expressed within its language. However, our hope is that Verifpal would not miss attacks affecting
models of, or resembling, “real-world protocols”. Our rationale is that given Verifpal’s goals,
it is preferable to avoid risking non-terminating analysis in order to account for attacks that are
unlikely to occur in real-world protocol constructions. This leaves us with the problematically
subjective definition of what constitutes a “real-world protocol”, and implies that Verifpal will
for the first few years of its existence require work on grounding and expressing more clearly the
constraints of the protocols which can be expressed and for which missed attacks can truly be
ruled out.

Our central argument is that the analysis logic described in this section is sufficient in order to
capture a majority of confidentiality and authentication attacks within the language.

4.3.1 Value Construction

Protocol analysis always begins from the point of view of the attacker. The initial set of values
that the attacker can know are necessarily constants, since only constants can be exchanged
within network messages (Figure 1). “Pure” constants (constants that are declared via a knows

or generates expression and not via assignment) resolve to themselves (x → x). Assigned
constants resolve to either a primitive or an equation. Primitives can take constants, primitives
or equations as arguments but always return constants. Equations can only take constants as
arguments (effectively exponents).

4.3.2 Deconstructions, Rewrites, and Checks

Verifpal primitives have two kinds of potential rules:

• Decomposition rules allow principals and the attacker to obtain the value of a primitive’s
argument by knowing the primitive’s output and only some of the primitive’s other argu-
ments.
For example, knowing e = ENC(k, m) and k allows us to obtain m. AEAD_ENC, AEAD_DEC,
ENC and DEC have decomposition rules.
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• Rewrite rules allow principals and the attacker to rewrite a primitive’s assigned value if
certain conditions are satisfied.
For example, d = AEAD_DEC(k, e, a)would be rewritten to d = p if e = AEAD_ENC(k, p, a).
When we “check” a primitive (see §2.3.2), a failed rewrite is essentially what we are terming
as a “failed check” — checks simply make it such that failed rewrites abort session execu-
tion at that point. ASSERT, SPLIT, SIGNVERIF, DEC, AEAD_DEC, PKE_DEC and other primitives
have rewrite rules.

4.3.3 Genealogy of Values

In Verifpal, once a constant is known, generated or assigned, an immutable creator value is
assigned to it defining the principal responsible for creating it. As the value travels across the
network, a sender chain is built tracking its genealogy. For example, if Alice creates a value m

and sends it to Bob, and if Bob then sends it to Carol, then m would have Alice as its creator and
a sender chain of Alice → Bob → Carol.

When an attacker is tasked with contradicting an authentication query, it attempts to find out if a
scenario exists in which a value is used in a primitive (or worse, triggers a valid rewrite rule) that
does not follow the sender chain decreed by the authentication query.

4.3.4 Mutations and Guarded Constants

Except for guarded constants, the attacker can, at will, substitute any constant with any other,
including constants crafted by the attacker. The goal of these substitutions is to execute the
protocol in every possible permutation of constant-to-value assignments based on the values
known by the attacker. Each unguarded constant risks being permuted with:

• Other constants and values from the protocol that have been revealed to the attacker.

• New primitive and equation declarations constructed from values that have been revealed
to the attacker.

• Malicious values crafted by the attacker, including for example malicious public keys or
malicious signatures under key pairs generated and owned by the attacker.

As noted earlier, once the attacker gains new values through this process, the permutation table is
recalculated and the set of executions begins anew. Protocol analysis ends when no new values
are known to the attacker after a complete run of all possible permutations. The goal of this step
is to obtain a full search of all runs of the protocol under all possible discoverable values, given
the assumption that Verifpal’s analysis methodology allows the attacker to obtain all obtainable
values.

Mutations and transformations are executed recursively. That is, if executing any one of Resolve,
Deconstruct, Reconstruct and Equivalize leads to new values being discovered, then that
transformation is executed recursively until no new values are found. If any new values are found,
the series of four transformations is also re-executed recursively in its totality until no new values
are obtainable by the attacker. Once that is the case, we move on to the next mutation.
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In Part II of this manual, we will look at how popular secure protocols such as Signal and
Scuttlebutt, can be modeled in Verifpal. We will go through the rationale behind the construction
of the model and queries and the capabilities given to the attacker. Finally, we will cover the

results of Verifpal’s analysis and see if it changes based on how we tweak the model. By looking
at these three protocols, you will hopefully obtain a more complete picture on verification with

Verifpal.



part ii

Protocol Examples in Verifpal
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CHAPTER 5

SECURE MESSAGING WITH SIGNAL

Introduced in 2014, the Signal protocol1 started off as the core of the eponymous Signal messaging
app for Android and iOS devices. In the following years it was also adopted by WhatsApp,
Facebook Messenger, Skype and other applications. Today, it is responsible for encrypted
communications on at least a billion devices worldwide, competing with Apple’s iMessage
protocol and Telegram’s MTProto protocol2.

5.1 security goals

Aside from targeting obvious security goals such as message confidentiality and mutual authenti-
cation for principals, Signal differentiated itself from predecessors as well as from its competitor
protocols by offering some ambitious security properties. The core design element behind these
features is the fact that in Signal, each principal has essentially two types of key pairs: long-term
key pairs, which serve to authenticate the identity of Alice and Bob to one another, are used
exclusively for signing and for session establishment and that never change, and ephemeral key
pairs, which last at most for a handful of messages and are used solely for encryption. The point
of this approach is target the following security goals:

• Forward-secure authenticated key exchange. After a Signal session is established between
Alice and Bob, revealing any or both parties’ long-term keys does not reveal the contents
of any of their messages3. Since long-term keys are the only key material that remains
on-device for extended periods of time, it can be assumed that this security goal is supposed
to guard against device theft.

• Per-message forward secrecy and post-compromise security. If Alice or Bob’s state were
to be compromised at any point in time, the number of past and future messages, relevant

1https://signal.org/docs/
2We focus on Signal as an example in this manual because it achieves stronger security properties than

iMessage and MTProto.
3This property is not specifically new to Signal, but was also used by the Off-the-Record messaging protocol,

first presented in 2004.
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Figure 5.1: Signal’s “X3DH” authenticated key exchange. IKA and IKB represent Alice and Bob’s
long-term key pairs. EKA represents Alice’s ephemeral session key pair. SPKB and OPKB represent
Bob’s signed ephemeral pre-key and one-time ephemeral pre-key. Three Diffie-Hellman shared secret
calculations, and one optional Diffie-Hellman shared secret calculation, are conducted.

to the last message sent at time of compromise, is limited4.

Aside from these security-centric features, Signal also offers asynchronous (“offline”) session
establishment: Alice is able to establish a Signal session with Bob and send a message even
if Bob’s phone is turned off. When Bob turns his phone back on, he will immediately receive
Alice’s message (even if, at the time, Alice’s phone is off.) This mirrors the behavior of SMS,
which people are likely to expect on mobile devices. This SMS-like use case significantly affects
Signal’s design.

5.2 principals

Our first step in Verifpal will be to model Signal’s essential protocol components and then to
illustrate how these components can be used by Alice and Bob in order to conduct a Signal
session.

5.2.1 Modeling the Key Exchange

Figure 5.1 illustrates how Signal’s authenticated key exchange works. When initiating a session
with Bob, Alice will perform four Diffie-Hellman operations:

1. Between Alice’s long-term private key and Bob’s “signed pre-key”, an ephemeral public
key that Bob has pre-emptively generated, signed using his long-term private key, and
stored on the Signal server.

2. Between Alice’s ephemeral private key, generated for this session, and Bob’s long-term
public key.

3. Between Alice’s ephemeral private key and Bob’s signed pre-key.
4How limited is a matter of debate. While the Signal protocol tries to enforce this property between every

message, real-world considerations such as network unreliability makes this practically impossible to maintain, and
applications such as WhatsApp can have significantly wide forward secrecy “windows of compromise” enveloping
multiple messages.
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4. Between Alice’s ephemeral private key and Bob’s “one-time pre-key”, an ephemeral public
key that Bob has pre-emptively generated and stored on the Signal server. Unlike the signed
pre-key, it is not signed5.

The four values obtained above are then hashed into a single value known as the master secret.
Alice can also include an encrypted message along with her key exchange message, therefore
accomplishing the “SMS-like” behavior mentioned earlier. So, let’s declare Alice and Bob in
Verifpal:

Signal: Initializing Alice

attacker[active]

principal Alice[

knows public c0, c1, c2, c3, c4

knows private alongterm

galongterm = G^alongterm

]

Signal: Initializing Bob

principal Bob[

knows public c0, c1, c2, c3, c4

knows private blongterm, bs

generates bo

gblongterm = G^blongterm

gbs = G^bs

gbo = G^bo

gbssig = SIGN(blongterm, gbs)

]

Now, let’s have Alice initiate a session with Bob and derive a master secret, which she stores as
amaster:

Signal: Alice Initiates Session with Bob

Bob→ Alice: [gblongterm], gbssig, gbs, gbo

principal Alice[

generates ae1

gae1 = G^ae1

amaster = HASH(c0, gbs^alongterm, gblongterm^ae1, gbs^ae1, gbo^ae1)

arkba1, ackba1 = HKDF(amaster, c1, c2)

]

5.2.2 Modeling Messages and the Double Ratchet

Since long-term keys are only employed in master secret derivation, and since we want to achieve
per-message forward secrecy and post-compromise security, we want to both authenticate future
messages based on Alice and Bob’s identities while keeping them confidential using perpetually

5Signed pre-keys are rotated roughly once a week, while one-time pre-keys are only used once. This is simply
because signing is a slow and computationally expensive process, and having Bob’s phone sign every one-time
pre-key (of which a server could store hundreds at a time) would be somewhat inefficient.
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fresh ephemeral shared secrets. The logic behind this “Double Ratchet” mechanism is fairly
complicated, but in essence, here’s how we can model it in Verifpal:

Signal: Alice Encrypts Message 1 to Bob

principal Alice[

generates m1, ae2

gae2 = G^ae2

valid = SIGNVERIF(gblongterm, gbs, gbssig)?

akshared1 = gbs^ae2

arkab1, ackab1 = HKDF(akshared1, arkba1, c2)

akenc1, akenc2 = HKDF(MAC(ackab1, c3), c1, c4)

e1 = AEAD_ENC(akenc1, m1, HASH(galongterm, gblongterm, gae2))

]

Alice→ Bob: [galongterm], gae1, gae2, e1

Notice how Alice generates a second fresh ephemeral key pair, (ae2, gae2 = G^ae2), and mixes
it with the master secret in order to derive two symmetric keys, ackab1 will be used for encryption,
while arkab1 will only be used to derive future pairs of symmetric keys in the same fashion,
thereby keeping a relationship back to the master secret, which ensures that all future derived
keys are mixed with the key material that provided authentication in the master secret.

Notice also how the SIGNVERIF primitive is checked — if Alice can’t verify the signature of
Bob’s signed pre-key gbs using Bob’s long-term signing public key gblongterm, then the entire
session is aborted.

Finally, notice how we are guarding gblongterm and galongterm from being modified by an
active attacker while in transit – this achieves a model where Alice and Bob have mutually
pre-authenticated one another’s long-term public keys.

Alice then encrypts her chosen plaintext message m1 to produce ciphertext e1. Notice how the
Signal protocol specifies that a hash of the public keys used in this session must go as associated
data to the message encryption primitive. This helps achieve a property known as session or
channel binding.

Here’s how Bob can decrypt Alice’s first message (after also generating the master secret):

Signal: Bob Derives Shared Master Secret

principal Bob[

bmaster = HASH(c0, galongterm^bs, gae1^blongterm, gae1^bs, gae1^bo)

brkba1, bckba1 = HKDF(bmaster, c1, c2)

]
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Signal: Bob Decrypts Alice's Message 1

principal Bob[

bkshared1 = gae2^bs

brkab1, bckab1 = HKDF(bkshared1, brkba1, c2)

bkenc1, bkenc2 = HKDF(MAC(bckab1, c3), c1, c4)

m1_d = AEAD_DEC(bkenc1, e1, HASH(galongterm, gblongterm, gae2))

]

And here’s how Bob can send his reply, encrypting his message m2 to produce ciphertext e2.
Notice how with each message, a new key pair is generated and mixed in with the chain of keys
continuously descending from the master secret — that’s what Signal’s Double Ratchet is all
about:

Signal: Bob Encrypts Message 2 to Alice

principal Bob[

generates m2, be

gbe = G^be

bkshared2 = gae2^be

brkba2, bckba2 = HKDF(bkshared2, brkab1, c2)

bkenc3, bkenc4 = HKDF(MAC(bckba2, c3), c1, c4)

e2 = AEAD_ENC(bkenc3, m2, HASH(gblongterm, galongterm, gbe))

]

Bob→ Alice: gbe, e2

For good measure, we model a final message m3 sent from Alice to Bob, after Alice decrypts
Bob’s message:

Signal: Alice Decrypts Message 2

principal Alice[

akshared2 = gbe^ae2

arkba2, ackba2 = HKDF(akshared2, arkab1, c2)

akenc3, akenc4 = HKDF(MAC(ackba2, c3), c1, c4)

m2_d = AEAD_DEC(akenc3, e2, HASH(gblongterm, galongterm, gbe))

]

Signal: Alice Encrypts Message 3 to Bob

principal Alice[

generates m3, ae3

gae3 = G^ae3

akshared3 = gbe^ae3

arkab3, ackab3 = HKDF(akshared3, arkba2, c2)

akenc5, akenc6 = HKDF(MAC(ackab3, c3), c1, c4)

e3 = AEAD_ENC(akenc5, m3, HASH(gblongterm, galongterm, gae3))

]

Alice→ Bob: gae3, e3
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Signal: Bob Decrypts Message 3

principal Bob[

bkshared3 = gae3^be

brkab3, bckab3 = HKDF(bkshared3, brkba2, c2)

bkenc5, bkenc6 = HKDF(MAC(bckab3, c3), c1, c4)

m3_d = AEAD_DEC(bkenc5, e3, HASH(gblongterm, galongterm, gae3))

]

Finally, we want to specify that, at a later point in time after their session has been conducted, it is
possible that Alice and Bob will both have their phones stolen, thereby revealing their long-term
private keys (but not their ephemeral private keys) to the attacker. We uses phases (as described
in §2.5) to express this:

Signal: Long-Term Private Key Leakage in Subsequent Phase

phase[1]

principal Alice[leaks alongterm]

principal Bob[leaks blongterm]

Now that we’ve modeled a fairly illustrative and representative execution of the Signal protocol
between Alice and Bob, covering an authenticated key exchange as well as three messages, we’re
finally ready to ask Verifpal some tough questions and to analyze if, and how, our model of Signal
achieves its desired security goals.

5.3 queries and analysis

Given that Signal is a secure messaging protocol, we certainly want to check whether m1, m2 and
m3 are confidential against an active attacker. We also want to check if an attacker can impersonate
any of the principals in sending one of the above messages.

Formulating these queries in Verifpal is straightforward:

Signal: Message Queries

queries[

confidentiality? m1

authentication? Alice→ Bob: e1

confidentiality? m2

authentication? Bob→ Alice: e2

confidentiality? m3

authentication? Alice→ Bob: e3

]

Now, let’s look at our initial results:

Signal: Initial Analysis Results

Verifpal! verification completed at 12:36:53
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This indicates that Verifpal was unable to find a contradiction to any of the queries. This goes hand
in hand with previous academic formal verification work on Signal [15, 16]: if Alice and Bob
initiate a session with mutual pre-authentication, and if Alice is aborting the session should Bob’s
signed pre-key not pass signature verification, then the Signal protocol achieves confidentiality
and authentication for messages sent between the two parties. Great!

If we uncheck Alice’s usage of SIGNVERIF, we see that results don’t change. But what happens if
we then also unguard Bob’s long-term public key as it is being sent to Alice?

Signal: Results with Mayor-in-the-Middle on Bob's Keys

Result • authentication? Bob→ Alice: e2: When the following values are controlled by

Attacker:

gblongterm → G^nil (originally G^blongterm)

gbs → G^nil (originally G^bs)

gbo → G^nil (originally G^bo)

gbe → G^nil (originally G^be)

e2 (AEAD_ENC(HKDF(MAC(HKDF(G^ae2^be, HKDF(G^ae2^bs, HKDF(HASH(c0, G^alongterm^bs, G^

ae1^blongterm, G^ae1^bs, G^ae1^bo), c1, c2), c2), c2), c3), c1, c4), m2, HASH(G^

blongterm, G^alongterm, G^be))), sent by Bob, is successfully used in AEAD_DEC(

HKDF(MAC(HKDF(G^nil^ae2, HKDF(G^nil^ae2, HKDF(HASH(c0, G^nil^alongterm, G^nil^ae1,

G^nil^ae1, G^nil^ae1), c1, c2), c2), c2), c3), c1, c4), AEAD_ENC(HKDF(MAC(HKDF(G^

ae2^be, HKDF(G^ae2^bs, HKDF(HASH(c0, G^alongterm^bs, G^ae1^blongterm, G^ae1^bs, G^

ae1^bo), c1, c2), c2), c2), c3), c1, c4), m2, HASH(G^blongterm, G^alongterm, G^be)

), HASH(G^nil, G^alongterm, G^nil)) within Alice's state, despite being vulnerable

to tampering.

(Analysis 25)

Result • confidentiality? m1: When the following values are controlled by Attacker:

gblongterm → G^nil (originally G^blongterm)

gbs → G^nil (originally G^bs)

gbo → G^nil (originally G^bo)

gbe → G^nil (originally G^be)

m1 (m1) is obtained by Attacker.

(Analysis 26)

Result • confidentiality? m3: When the following values are controlled by Attacker:

gblongterm → G^nil (originally G^blongterm)

gbs → G^nil (originally G^bs)

gbo → G^nil (originally G^bo)

gbe → G^nil (originally G^be)

m3 (m3) is obtained by Attacker.

However, if we were to keep Bob’s long-term public key guarded while compromising Bob’s
long-term private keys after the session by using phases (§2.5), we would see that forward secrecy
would hold in Signal.

Tweaking your model and re-running analysis is central to getting the most insight out of Verifpal.
By making some very simple changes to our model, we were quickly able to go from a fully
secure model to one that showed us whether forward secrecy would be achieved in the event of a
long-term private key compromise, and then to another that provided a warning on the importance
of mutual pre-authentication.



CHAPTER 6

GOSSIP WITH SCUTTLEBUTT

Scuttlebutt1 is a protocol for decentralized communication. While the full protocol includes
mechanisms for many secure features, including private group chat, in this chapter we will be
looking at the Scuttlebutt authenticated key exchange and seeing how we can model and analyze
it in Verifpal.

6.1 security goals

Scuttlebutt documents a variety of security goals that the protocol aims to accomplish. In our
analysis, we will focus on a handful of these goals:

• Initiator identity hiding. An attacker cannot learn the public key of the initiator.

• Message confidentiality. An attacker cannot learn the content of messages exchanged
between principals.

• Network identifier hiding. Both peers need to know a key that represents the particular
Scuttlebutt network they wish to connect to, however a mayor-in-the-middle can’t learn
this key from the handshake.

• Forward secrecy. Recording a user’s network traffic and then later stealing their secret key
will not allow an attacker to decrypt their past handshakes.

6.2 principals

Similarly to Signal, Scuttlebutt also gives each principal a long-term key pair, used for identity
authentication, and ephemeral key pairs used for encryption. Let’s initialize Alice and Bob’s
states:

1https://ssbc.github.io/scuttlebutt-protocol-guide/
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Declaring New Principals: Alice and Bob

principal Alice[

knows public null

knows private n

knows private longTermA

generates ephemeralA

longTermAPub = G^longTermA

ephemeralAPub = G^ephemeralA

]

principal Bob[

knows public null

knows private n

knows private longTermB

generates ephemeralB

longTermBPub = G^longTermB

ephemeralBPub = G^ephemeralB

]

Bob→ Alice: [longTermBPub]

Note that in the above, we are declaring n, the so-called Scuttlebutt “network identifier”, to be a
private pre-known value, unknown to the attacker. It is not clear how realistic this model is, as
the Scuttlebutt protocol seems to expect all users of a network to know this value, but for it to be
simultaneously unknown to an attacker. We’ll see later what changes if we re-run our analysis
with n being a publicly known value.

Unlike Signal, Scuttlebutt’s key exchange is rather wordy and takes its time, spanning over two
round trips. In the first round trip, Alice and Bob simply exchange client and server “hello”
messages:

Scuttlebutt: Alice and Bob Exchange Ephemeral Public Keys

principal Alice[

nMacAlice = MAC(n, ephemeralAPub)

]

Alice→ Bob: ephemeralAPub, nMacAlice

principal Bob[

nMacAliceValid = ASSERT(MAC(n, ephemeralAPub), nMacAlice)?

nMacBob = MAC(n, ephemeralBPub)

]

Bob→ Alice: ephemeralBPub, nMacBob

The goal of the MAC here is simply to provide context or channel binding to the generated values,
so as to avoid them being re-usable by an attacker in a different Scuttlebutt network, which would
have a different identifier2.

Alice then proceeds to generate two session secrets: one that she uses to encrypt her long-term
public key to Bob (thereby hiding it from the attacker), and another that she will use to encrypt
messages:

2Again, it is unclear how seriously we can expect a strong attacker not to know the identifier of the networks
they are attempting to conduct active attacks in, but that is not something we can decide.
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Scuttlebutt: Alice Generates Session Secrets

principal Alice[

nMacBobValid = ASSERT(MAC(n, ephemeralBPub), nMacBob)?

ephemeralSecretAlice = ephemeralBPub^ephemeralA

longTermSecretAlice = longTermBPub^ephemeralA

masterSecret1Alice = HASH(n, ephemeralSecretAlice, longTermSecretAlice)

sig1Alice = SIGN(longTermA, HASH(n, longTermBPub, ephemeralSecretAlice))

secretBox1Alice = AEAD_ENC(masterSecret1Alice, sig1Alice, null)

secretBox2Alice = AEAD_ENC(masterSecret1Alice, longTermAPub, null)

longEphemeralSecretAlice = ephemeralBPub^longTermA

masterSecret2Alice = HASH(n, ephemeralSecretAlice, longTermSecretAlice,

longEphemeralSecretAlice)

]

Alice→ Bob: secretBox1Alice, secretBox2Alice

Bob decrypts Alice’s long-term public key and generates the same set of shared secrets:

Scuttlebutt: Bob Generates Session Secrets

principal Bob[

ephemeralSecretBob = ephemeralAPub^ephemeralB

longTermSecretBob = ephemeralAPub^longTermB

masterSecret1Bob = HASH(n, ephemeralSecretBob, longTermSecretBob)

sig1Bob = AEAD_DEC(masterSecret1Bob, secretBox1Alice, null)?

longTermAPub_Bob = AEAD_DEC(masterSecret1Bob, secretBox2Alice, null)?

sig1Valid = SIGNVERIF(longTermAPub_bob, HASH(n, longTermBPub, ephemeralSecretBob),

sig1Bob)?

longEphemeralSecretBob = longTermAPub_Bob^ephemeralB

]

Bob then generates and encrypts a signature confirming his intent to engage with Alice in this
session:

Scuttlebutt: Bob Signs Session Transcript

principal Bob[

sig2Bob = SIGN(longTermB, HASH(n, sig1Bob, longTermAPub_Bob, ephemeralSecretBob))

masterSecret2Bob = HASH(n, ephemeralSecretBob, longTermSecretBob,

longEphemeralSecretBob)

secretBox1Bob = AEAD_ENC(masterSecret2Bob, sig2Bob, null)

]

Bob→ Alice: secretBox1Bob

Finally, Alice and Bob can now exchange some test messages. We use m1 and m2, similar to our
model of Signal:
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Scuttlebutt: Alice Encrypts and Sends Message to Bob

principal Alice[

knows private m1

sig2Alice = AEAD_DEC(masterSecret2Alice, secretBox1Bob, null)?

sig2Valid = SIGNVERIF(longTermBPub, HASH(n, sig1Alice, longTermAPub,

ephemeralSecretAlice), sig2Alice)?

secretBoxM1Alice = AEAD_ENC(masterSecret2Alice, m1, null)

]

Alice→ Bob: secretBoxM1Alice

Scuttlebutt: Bob Receives and Decrypts Message from Alice

principal Bob[

knows private m2

m1Bob = AEAD_DEC(masterSecret2Bob, secretBoxM1Alice, null)?

secretBoxM2Bob = AEAD_ENC(masterSecret2Bob, m2, null)

]

Scuttlebutt: Bob Encrypts and Sends Message to Alice

Bob→ Alice: secretBoxM2Bob

principal Alice [

m2Alice = AEAD_DEC(masterSecret2Alice, secretBoxM2Bob, null)?

]

Now that we’ve modeled a fairly illustrative and representative execution of the Scuttlebutt protocol
between Alice and Bob, covering an authenticated key exchange as well as three messages, we’re
finally ready to ask Verifpal some tough questions and to analyze if, and how, our model of
Scuttlebutt achieves its desired security goals.

6.3 queries and analysis

Earlier in this chapter, we identified four security goals that we wanted to test for. Let’s summarize
them again with regards to our model. The attacker should not be able to:

• Know the initiator (Alice’s) public key longTermAPub.

• Know messages m1 and m2.

• Know the “network identifier” n.

• Know the content of messages even if long-term private keys are leaked.

Here are these security goals as Verifpal queries (with the addition of some standard authentication
queries for messages:)
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Scuttlebutt: Confidentiality and Authentication Queries

queries[

confidentiality? m1

confidentiality? m2

confidentiality? longTermAPub

authentication? Alice→ Bob: secretBox1Alice

authentication? Alice→ Bob: secretBox2Alice

authentication? Bob→ Alice: secretBox1Bob

authentication? Alice→ Bob: secretBoxM1Alice

authentication? Bob→ Alice: secretBoxM2Bob

]

Now, let’s look at our initial results:

Scuttlebutt: Initial Results

Verifpal! verification completed at 15:24:51

No contradictions to our queries are found — but similarly to our initial analysis of Signal in
Chapter 5, this is due to the fact that we made sure to guard Bob’s long-term key and to check all
signature verification primitives. So, let’s unguard longTermBPub as it is being sent to Alice, and
try again:

Scuttlebutt: Results with Mayor-in-the-Middle Attack on Bob

Verifpal! verification completed at 15:27:27

No change! This might be surprising at first: can’t the attacker impersonate Bob at this point?
Indeed they can — but don’t forget that the “network identifier” n, which is used to derive
encryption keys, is considered unknown to the attacker here. It therefore acts as a pre-shared
key3. Making n public to the attacker, therefore, coupled with unguarding Bob’s long-term public
key, makes a huge difference:

Scuttlebutt: Results with Public n and Bob MitM

Result! confidentiality? n: n is obtained by the attacker as n

Result! confidentiality? longtermapub: longtermapub is obtained by the attacker as

longtermapub

Result! authentication? Alice→ Bob: secretbox1alice: secretbox1alice, sent by Attacker

and not by Alice and resolving to AEAD_ENC(mastersecret1alice, sig1alice, null), is

used in primitive AEAD_DEC(mastersecret1bob, secretbox1alice, null) in Bob's state

Result! authentication? Alice→ Bob: secretbox2alice: secretbox2alice, sent by Attacker

and not by Alice and resolving to AEAD_ENC(mastersecret1alice, longtermapub, null),

is used in primitive AEAD_DEC(mastersecret1bob, secretbox2alice, null) in Bob's

state

Aside the obvious first result, we see that the attacker was able to decrypt initiator Alice’s long-
term public key as well as impersonate Alice to Bob in sending the first two messages. Let’s

3Pre-shared keys are a common component in protocols. They usually are simply an encryption key that
is considered to be privately known to the principals before the session begins. This differs from mutual pre-
authentication in that pre-shared keys are symmetric keys and not public keys.
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guard Bob’s long-term public key again, leave n as public, and leak Alice’s long-term private key
post-handshake, right after she sends m1:

Scuttlebutt: Alice Leaks Long-Term Private Key

Alice→ Bob: secretBoxM1Alice, longTermA

Aside from obtaining n and longTermAPub (since the first is public and since we leaked the private
key of the second), the attacker is not able to contradict any other queries, thereby indicating
forward secrecy:

Scuttlebutt: Results Showing Forward Secrecy

Result! confidentiality? n: n is obtained by the attacker as n

Result! confidentiality? longtermapub: longtermapub is obtained by the attacker as

longtermapub

Tweaking your model and re-running analysis is central to getting the most insight out of Verifpal.
By making some very simple changes to our model, we were quickly able to go from a fully secure
model to one that showed us the security of the protocol when confronted with no authentication
for the responder (Bob) with and without a pre-shared key (n), and then whether forward secrecy
would be achieved in the event of a long-term private key compromise.



CHAPTER 7

CONTACT TRACING WITH DP-3T

This chapter is contributed by Georgio Nicolas.

In early 2020, numerous researchers published a new protocol which aimed to provide a proximity-
tracking solution that can help during pandemics while still being privacy-preserving: the result,
Decentralized Privacy-Preserving Proximity Tracing [17] (DP-3T), provided a promising first
step in bringing real-world cryptography into the effort to combat the COVID-19 pandemic, even
being eventually adopted by Apple and Google into their smartphone operating systems.

7.1 security goals

DP-3T’s security goals are summarized thus in the DP-3T whitepaper:

“…to simplify and accelerate the process of identifying people who have been in contact with an
infected person, thus providing a technological foundation to help slow the spread of the

SARS-CoV-2 virus. The system aims to minimise privacy and security risks for individuals and
communities and guarantee the highest level of data protection.”

7.2 modeling dp-3t

To demonstrate DP-3T, we will assume that the principals participating in this simulation are the
following:

• A population of 3 individuals: Alice, Bob, and Charlie, each of them possessing a smart-
phone: SmartphoneA, SmartphoneB, and SmartphoneC respectively;

• A Healthcare Authority serving this population;

• A Backend Server, that individuals can communicate with to obtain daily information.

49
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After installing Verifpal, we can start by creating a new model called “dp-3t.vp” in which we
begin by defining an attacker which matches with our security model. In this case we will be
using an active attacker (i.e. one that can not only monitor but also intercept and overwrite
unprotected messages on the network):

DP-3T: Declaring the Attacker

attacker[active]

We then proceed to illustrate our model as a sequence of days in which DP-3T is in operation
within the lifecycle of a pandemic.

7.2.1 Day 0: Setup Phase

We assume that no new individuals were diagnosed with the disease on Day 0 of using DP-3T.
This means that the Healthcare Authority and the Backend Server will not act at this stage and
we can simply ignore them for now.

The DP-3T specification states that every principal, when first joining the system, should generate
a random secret key (SK) to be used for one day only. For every SK value, and the knowledge of a
public “broadcast key” value, principals should compute multiple Unique Ephemeral ID values
(EphID) using a combination of a PRG and a PRF. The method of generating EphID is analogous
with the HKDF function from Verifpal. We could add the following lines of code to our file in
order to model Alice’s SmartphoneA:

DP-3T: SmartphoneA Setup

// A principal block looks like the following

principal SmartphoneA[

// In the line below we state that Alice knows the public BroadcastKey

knows public BroadcastKey

// SK is going to be a secret random value

// To define it we use the "generates" keyword

// We will use the following template for SK variable names

// SK[day number][principal initial]

generates SK0A

// We will use the following template for EphID variable names

// EphID[day number][value number][principal initial]

EphID00A, EphID01A, EphID02A = HKDF(nil, SK0A, BroadcastKey)

]

The same thing goes for Bob, and Charlie:
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DP-3T: SmartphoneB, SmartphoneC Setup

principal SmartphoneB[

knows public BroadcastKey

generates SK0B

EphID00B, EphID01B, EphID02B = HKDF(nil, SK0B, BroadcastKey)

]

principal SmartphoneC[

knows public BroadcastKey

generates SK0C

EphID00C, EphID01C, EphID02C = HKDF(nil, SK0C, BroadcastKey)

]

Whenever two principals would come be in physical proximity of each other, they would auto-
matically exchange EphIDs. Once a principal uses an EphID value, they discard it and use another
one when performing an exchange with another principal.

Let’s imagine that Alice and Bob came into contact. It would mean that Alice sent EphID00A in a
message to Bob and that Bob sent EphID00B to Alice:

Here is how the above message exchange is modeled in Verifpal:

DP-3T: EphID Communication

// Sender→ Recipient : Name of Value

SmartphoneA→ SmartphoneB: EphID00A

SmartphoneB→ SmartphoneA: EphID00B

Now, let’s say that in the conclusion of Day 0, Bob sits behind Charlie in the Bus:

Modeling this is equally simple:

DP-3T: EphID Communication

SmartphoneC→ SmartphoneB: EphID01C

SmartphoneB→ SmartphoneC: EphID01B
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7.2.2 Day 1

On Day 1, the Backend Server will automatically publish the SK values of people who were
infected to the members of the general population. These values were previously unpublished
and thus were private and only known by their generators and the server.

DP-3T: BackendServer Communication

principal BackendServer[

// Let's assume that infectedPatients0 is the list of infected patients on day 0

knows private infectedPatients0

]

BackendServer→ SmartphoneA: infectedPatients0

BackendServer→ SmartphoneB: infectedPatients0

BackendServer→ SmartphoneC: infectedPatients0

We should not forget that every day starting from Day 1, DP-3T mandates that principals will
generate new SK values. The new value will be equal to the hash of the SK value from the day
before. Principals will also generate EphIDs just like before.

DP-3T: EphID Generation

principal SmartphoneA[

SK1A = HASH(SK0A)

EphID10A, EphID11A, EphID12A = HKDF(nil, SK1A, BroadcastKey)

]

principal SmartphoneB[

SK1B = HASH(SK0B)

EphID10B, EphID11B, EphID12B = HKDF(nil, SK1B, BroadcastKey)

]

principal SmartphoneC[

SK1C = HASH(SK0C)

EphID10C, EphID11C, EphID12C = HKDF(nil, SK1C, BroadcastKey)

]

Thankfully, Alice, Bob and Charlie are committed to self-confinement and have stayed at home,
so they did not exchange EphIDs with anyone.

7.2.3 Day 2

On Day 2, a similar sequence of events takes place. Since it is sufficient to define the values that
we will need later on in our model, we will just define a block for Alice.
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DP-3T: EphID Generation

principal SmartphoneA[

SK2A = HASH(SK1A)

EphID20A, EphID21A, EphID22A = HKDF(nil, SK2A, BroadcastKey)

]

7.2.4 Fast-Forward to Day 15

Unfortunately, Alice tests positive for COVID-19. Since this breaks the routine that happened
between Day 1 and Day 15, we will announce a new phase1 in our protocol model:

DP-3T: Declaring a New Phase

phase[1]

Alice decides to announce her infection anonymously using DP-3T. This means that she will have
to securely communicate SK1A (her SK value from 14 days ago) to the Backend Server, using a
unique trigger token provided by the healthcare authority. Assuming that the Backend Server
and the Healthcare Authority share a secure connection, and that a key ephemeral_sk has been
exchanged off the wire by the Healthcare Authority, Alice, and the Backend Server, the Healthcare
Authority will encrypt a freshly generated triggerToken using ephemeral_sk and send it to both
Alice and the Backend Server.

DP-3T: Sending Tokens to HealthCareAuthority

principal HealthCareAuthority[

generates triggerToken

knows private ephemeral_sk

m1 = ENC(ephemeral_sk, triggerToken)

]

// The brackets around m1 here mean that the value is guarded

// ie: an active attacker cannot inject a value in its place

HealthCareAuthority→ BackendServer : [m1]

HealthCareAuthority→ SmartphoneA : m1

Then, Alice would have to use an AEAD cipher to encrypt SK1A using ephemeral_sk as the key
and triggerToken as additional data and send the output to the BackendServer. Note that Alice
can only obtain triggerToken after decrypting m1 using ephemeral_sk.

1See §2.5 for more information regarding phases in Verifpal.
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DP-3T: Communicating with BackendServer

principal SmartphoneA[

knows private ephemeral_sk

m1_dec = DEC(ephemeral_sk, m1)

m2 = AEAD_ENC(ephemeral_sk, SK1A, m1_dec)

]

SmartphoneA→ BackendServer: m2

The Backend Server will now have to decrypt m1 to receive the triggerToken in the same way
that Alice did, then attempt to decrypt m2. If that decryption was successful, the server would
obtain SK1A and would be sure that the value came from Alice because it is only Alice who knows
both triggerToken and SK1A at the same time as defined in the protocol.

Finally, the Backend Server will add SK1A to the list of infected patients previously defined, and
then send this list to all of the individuals in this community.

DP-3T: Updating List of Infected Patents

principal BackendServer [

knows private ephemeral_sk

m2_dec = AEAD_DEC(ephemeral_sk, m2, DEC(ephemeral_sk, m1))?

infectedPatients1 = CONCAT(infectedPatients0, m2_dec)

]

BackendServer→ SmartphoneA: infectedPatients1

BackendServer→ SmartphoneB: infectedPatients1

BackendServer→ SmartphoneC: infectedPatients1

Everything that happened in Day 15 can be summarized in the following diagram:

7.3 queries

Now, we may finally define the queries block, in which we ask Verifpal about the state of certain
security guarantees that we expect from the protocol.

Since SK1A is now shared publicly, the DP-3T software running on anyone’s phone should be
able to re-generate all EphID values generated by the owner of SK1A starting from 14 days prior
to the day of diagnosis. These values would then be compared with the list of EphIDs they have
received. Everyone who came in contact with Alice will therefore be notified that they have



CHAPTER 7. CONTACT TRACING WITH DP-3T 55

exchanged EphIDs with someone who has been diagnosed with the illness without revealing the
identity of that person.

DP-3T: Queries

queries[

// Would someone who shared a value 15 days before they got tested get flagged?

// ie in phase[0], before phase[1]

confidentiality? EphID02A

// Will people who came in contact with Alice be able to compute

// all of Alice's EphIDs starting from Day 1

confidentiality? EphID10A

confidentiality? EphID11A

confidentiality? EphID12A

confidentiality? EphID20A

confidentiality? EphID21A

confidentiality? EphID22A

// Is the server able to Authenticate Alice as the sender of m2

authentication? SmartphoneA→ BackendServer: m2

]

The results of our initial modeling in Verifpal suggest to us the following:

• No EphIDs generated by Alice are known by any parties before Alice announces her illness.

• EphID02A remains confidential even after Alice declaring her illness. Note that it was
generated 15 days before Alice got tested.

• All of the following values EphID10A, EphID11A, EphID12A, EphID20A, EphID21A, EphID22A
have been recoverable by an attacker in phase[1] after Alice announces her illness.

These results come in line with what is expected from the protocol. We note that the security
of communication channels between Healthcare Authorities, Backend Servers, and Individuals
have not been defined, and we have placed our hypothetical own security conditions with in order
to focus on quickly sketching the DP-3T protocol. Further analysis will be required in order to
better elucidate the extent of the obtained security guarantees.

Verifpal can guide you through an insightful and exciting investigation of the cryptographic
protocols that guard the security and privacy of our daily lives.

It’s up to you to decide — where will you go next?
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〈model〉 ::= 〈attacker〉 〈principal〉 (〈principal〉 | 〈message〉 | 〈phase〉)+ 〈queries〉

〈attacker〉 ::= ‘attacker[’ (‘active’ | ‘passive’) ‘]’

〈principal〉 ::= ‘principal’ 〈string〉 ‘[’ (〈knows〉 | 〈generates〉 | 〈leaks〉 | 〈assignment〉)+ ‘]’

〈knows〉 ::= ‘knows ’ (‘private’ | ‘public’ | ‘password’) 〈constant〉 (‘,’ 〈constant〉)*

〈generates〉 ::= ‘generates ’ 〈constant〉 (‘,’ 〈constant〉)*

〈leaks〉 ::= ‘leaks ’ 〈constant〉 (‘,’ 〈constant〉)*

〈assignment〉 ::= 〈constant〉 (‘,’ 〈constant〉)* ‘ = ’ (〈primitive〉 | 〈equation〉)

〈message〉 ::= 〈string〉 ‘ → ’ 〈string〉 ‘: ’ (〈constant〉 | 〈guardedConstant〉) (‘,’ (〈constant〉 |
〈guardedConstant〉))*

〈phase〉 ::= ‘phase[’ 〈number〉 ‘]’

〈queries〉 ::= ‘queries[’ (〈confidentialityQuery〉 | 〈authenticationQuery〉 | 〈freshnessQuery〉 |
〈unlinkabilityQuery〉 | 〈equivalenceQuery〉)* ‘]’

〈confidentialityQuery〉 ::= ‘confidentiality? ’ 〈constant〉 〈queryOptions〉?

〈authenticationQuery〉 ::= ‘authentication? ’ 〈string〉 ‘ → ’ 〈string〉 ‘: ’ 〈constant〉
〈queryOptions〉?

〈freshnessQuery〉 ::= ‘freshness? ’ 〈constant〉 〈queryOptions〉?

〈unlinkabilityQuery〉 ::= ‘unlinkability? ’ 〈constant〉 ‘,’ 〈constant〉 (‘,’ 〈constant〉)*
〈queryOptions〉?

〈equivalenceQuery〉 ::= ‘equivalence? ’ 〈constant〉 ‘,’ 〈constant〉 (‘,’ 〈constant〉)*
〈queryOptions〉?

〈queryOptions〉 ::= ‘[’ 〈queryOption〉* ‘]’

〈queryOption〉 ::= ‘precondition’ ‘[’ 〈message〉 ‘]’

〈constant〉 ::= 〈string〉

〈guardedConstant〉 ::= ‘[’ 〈constant〉 ‘]’

〈primitive〉 ::= 〈primitiveName〉 ‘(’ (〈constant〉 | 〈primitive〉 | 〈equation〉) (‘,’ (〈constant〉 |
〈primitive〉 | 〈equation〉))* ‘)’ [‘?’]

〈equation〉 ::= 〈constant〉 ‘^’ 〈constant〉

〈primitiveName〉 ::= ‘BLIND’ | ‘UNBLIND’ | ‘RINGSIGN’ | ‘RINGSIGNVERIF’ | ‘PW_HASH’ | ‘HASH’
| ‘HKDF’ | ‘AEAD_ENC’ | ‘AEAD_DEC’ | ‘ENC’ | ‘DEC’ | ‘MAC’ | ‘ASSERT’ | ‘CONCAT’ | ‘SPLIT’ |
‘SIGN’ | ‘SIGNVERIF’ | ‘PKE_ENC’ | ‘PKE_DEC’ | ‘SHAMIR_SPLIT’ | ‘SHAMIR_JOIN’

Figure 1: Verifpal language syntax.
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Alice Bob

Has identity (a3dh,asig),(ga3dh ,gasig)
Knows identity (gb3dh ,gbsig)

Has identity (b3dh,bsig),(gb3dh ,gbsig)
Knows identity (ga3dh ,gasig)
Has signed pre-key bs,gbs

Has one-time pre-key bo,gbo

SIGN(bsig,gbs),gbo

ae ∈ Zp

S = c0 | ga3dhbs | gaeb3dh | gaebs | gaebo

(rkba,ckba)⇐ HKDF(S,c1,c2)

ae′ ∈ Zp

kshared = gae′bs

(rkab,ckab)⇐ HKDF(kshared,rkba,c2)
kenc ⇐ HKDF(MAC(ckab,c3),c1,c4)

ga3dh ,gasig ,gae ,gae′ ,E0 = AEAD_ENC(kenc,M0,ga3dh | gasig | gb3dh | gbsig | gae′ )

S = c0 | ga3dhbs | gaeb3dh | gaebs | gaebo

(rkba,ckba)⇐ HKDF(S,c1,c2)
Delete pre-key(bo,gbo)

kshared = gae′bs

(rkab,ckab)⇐ HKDF(kshared,rkba,c2)
kenc ⇐ HKDF(MAC(ckab,c3),c1,c4)
M0 ⇐ AEAD_DEC(kenc,E0,ga3dh | gasig | gb3dh | gbsig | gae′ )

be ∈ Zp

kshared = gae′be

(rkba,ckba)⇐ HKDF(kshared ,rkab,c2)
kenc ⇐ HKDF(MAC(ckba,c3),c1,c4)

gbe ,E1 = AEAD_ENC(kenc,M1,gb3dh | gbsig | ga3dh | gasig | gbe)

kshared = gae′be

(rkba,ckba)⇐ HKDF(kshared,rkab,c2)
kenc ⇐ HKDF(MAC(ckba,c3),c1,c4)
M1 ⇐ AEAD_DEC(kenc,E1,gb3dh | gbsig | ga3dh | gasig | gbe)

Figure 2: The Signal protocol (simplified). Alice requests a signed pre-key from Bob (via the server) and
sends an initial message M0. Bob accomplishes his side of the key exchange and obtains M0.
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Alice Bob

Has identity (A,gA)
Knows gB; N

Generates Zp
$−→ a

Has identity (B,gB)
Knows N

M1 := (ga,MAC(N,ga))

ASSERT(M1,N)

Generates Zp
$−→ b

M2 := (gb,MAC(N,gb))

ASSERT(M2,N)

S1 := HASH
(
N | (gb)a | (gB)a

)
S1 := HASH

(
N | (ga)b | (ga)B

)
M3 := AEAD_ENC(S1,(SIGN(A,(N | gB | HASH(gab))),gA),⊥

)
SA,gA := AEAD_DEC(S1,M3)
SIGNVERIF

(
SA,gA,(N | gB | HASH(gab))

)
S2 := HASH

(
N | gab | gaB | (gb)A

)
S2 := HASH

(
N | gab | gaB | (gA)b

)
M4 := AEAD_ENC

(
S2,SIGN(B,(N | SA | gA | HASH(gab))),⊥

)
SB := AEAD_DEC(S2,M4)
SIGNVERIF

(
SB,gB,(N | SA | gA | HASH(gab))

)
Figure 3: Secure Scuttlebutt’s Authenticated Key Exchange (AKE) phase. Here, Bob acts as the server;
Alice is assumed to have a pre-authenticated copy of Bob’s long-term public key gB before initializing
the session. The AKE attempts to accomplish identity hiding with respect to Alice, key compromise
impersonation resistance, and forward secrecy.



NOTES

This is Print 15 of the First Edition of the Verifpal User Manual.

Print 15 (May 7, 2021)

• Add new section in Chapter 3 documenting equivalence queries introduced in Verifpal
0.23.0.

• Added a Are You Sure It’s Private? information box.

Print 14 (October 25, 2020)

• Some clarifications to Verifpal’s analysis goals in Chapter 4.

Print 13 (June 28, 2020)

• Add a small section about VerifHub to Chapter 1.

Print 12 (April 30, 2020)

• Add new primitives: BLIND and UNBLIND.

• Expand documentation for Verifpal for Visual Studio Code.

Print 11 (April 15, 2020)

• Add new sections in Chapter 3 documenting freshness and unlinkability queries as intro-
duced in Verifpal 0.12.0.

• Add freshness and unlinkability queries to the Verifpal syntax table.

• Correct typos.
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Print 10 (April 11, 2020)

• Add a new chapter on the DP-3T protocol, contributed by Georgio Nicolas.

Print 9 (February 29, 2020)

• Introduce the notion of “core primitives”. Make ASSERT a core primitive.

• Add new core primitives: CONCAT and SPLIT.

Print 8 (February 6, 2020)

• Rewrite Signal forward secrecy section.

• Add documentation for leaks declaration.

• Add documentation for query options.

Print 7 (January 29, 2020)

• Add documentation for phases.

Print 6 (January 25, 2020)

• Add new primitive: PW_HASH.

• Add documentation for the password qualifier for knows declarations.

Print 5 (January 10, 2020)

• Add new primitives: PKE_ENC, PKE_DEC, SHAMIR_SPLIT, SHAMIR_JOIN.

• Add installation instructions for the Homebrew package manager.

• Minor corrections and changes.

Print 4 (September 9, 2019)

• Rename HMACVERIF to ASSERT and HMAC to MAC.

Print 3 (September 3, 2019)

• Reformatted book in preparation for hardcover textbook printing.
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• Some minor changes and additions.

Print 2 (August 31, 2019)

• Added instructions for building Verifpal from source on Windows.

• Fixed some inaccuracies in Chapter 6.

• Fixed some grammar errors.

Print 1 (August 26, 2019)

• Initial Print.
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