
Cryptographic protocol analysis for
students and engineers

Nadim Kobeissi

Mozilla Berlin, November 5, 2019

Verifpal

What is Formal Verification?

• Using software tools in order to obtain guarantees on the security of

cryptographic components.

• Protocols have unintended behaviors when confronted with an active

attacker: formal verification can prove security under certain active attacker

scenarios!

• Primitives can act in unexpected ways given certain inputs: formal

verification: formal verification can prove functional correctness of

implementations!

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
1

Formal Verification Today

Protocols: ProVerif, Tamarin

• Take models of protocols (Signal, TLS)

and find contradictions to queries.

• “Can the attacker decrypt Alice’s first

message to Bob?”

• Are limited to the “symbolic model”,

CryptoVerif works in the

“computational model”.

Code and Implementations: F*

• Exports type checks to the Z3 theorem

prover.

• Can produce provably functionally

correct software implementations of

primitives (e.g. Curve25519 in

HACL*).

• Can produce provably functionally

correct protocol implementations

(Signal*).

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
2

Symbolic and Computational Models

Computational Model

• Primitives are nuanced (IND-CPA,

IND-CCA, etc.)

• Security bounds (2128, etc.)

• Human-assisted.

• Produces game-based proof, similar

technique to hand proofs.

Symbolic Model

• Primitives are “perfect” black boxes.

• No algebraic or numeric values.

• Can be fully automated.

• Produces verification of no

contradictions (theorem assures no

missed attacks).

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
3

Symbolic Verification Overview

• Main tools: ProVerif, Tamarin.

• User writes a model of a protocol in action:

• Signal AKE, bunch of messages between Alice and Bob,

• TLS 1.3 session between a server and a bunch of clients,

• ACME for Let’s Encrypt (with domain name ownership confirmation…)

• User writes queries:

• “Can someone impersonate the server to the clients?”

• “Can a client hijack another client’s simultaneous connection to the server?”

• ProVerif and Tamarin try to find contradictions.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
4

Symbolic Verification, Still?

• F* and computational models do not allow us to naturally express and
model protocols according to a system based on discrete principals with
internal states.

• Writing a protocol in F* just to check it against security goals on a network:
unreasonable cost/benefit tradeoff.

• Research in symbolic verification is still producing novel results:

• Prime, Order Please! Revisiting Small Subgroup and Invalid Curve Attacks on
Protocols using Diffie-Hellman – Cas Cremers and Dennis Jackson

• Seems Legit: Automated Analysis of Subtle Attacks on Protocols that Use Signatures
– Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon and Ralf Sasse

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
5

Symbolic Verification is Wonderful

• Many papers published in the past 4 years: symbolic verification proving

(and finding attacks) in Signal, TLS 1.3, Noise, Scuttlebutt, Bluetooth, 5G

and much more!

• This is a great way to work, allowing practitioners to reason better about

their protocols before/as they are implemented.

Why isn’t it used more?

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
6

Tamarin and ProVerif: Examples

rule Get_pk:
[!Pk(A, pk)]
-->
[Out(pk)]

// Protocol
rule Init_1:

[Fr(~ekI), !Ltk($I, ltkI)]
-->
[Init_1($I, $R, ~ekI)

, Out(<$I, $R, 'g' ^ ~ekI, sign{'1', $I, $R,'g' ^ ~ekI
}ltkI>)]

rule Init_2:
let Y = 'g' ^ z // think of this as a group element check

in
[Init_1($I, $R, ~ekI)
, !Pk($R, pk(ltkR))
, In(<$R, $I, Y, sign{'2', $R, $I, Y }ltkR>)
]

--[SessionKey($I,$R, Y ^ ~ekI)
, ExpR(z)
]->
[InitiatorKey($I,$R, Y ^ ~ekI)]

letfun writeMessage_a(me:principal, them:principal,

hs:handshakestate, payload:bitstring, sid:sessionid) =
let (ss:symmetricstate, s:keypair, e:keypair, rs:key,

re:key, psk:key, initiator:bool) =
handshakestateunpack(hs) in

let (ne:bitstring, ns:bitstring, ciphertext:bitstring)

= (empty, empty, empty) in
let e = generate_keypair(key_e(me, them, sid)) in

let ne = key2bit(getpublickey(e)) in
let ss = mixHash(ss, ne) in
let ss = mixKey(ss, getpublickey(e)) in

let ss = mixKey(ss, dh(e, rs)) in
let s = generate_keypair(key_s(me)) in

[…]

event(RecvMsg(bob, alice, stagepack_c(sid_b), m)) ==>
(event(SendMsg(alice, c, stagepack_c(sid_a), m))) ||

((event(LeakS(phase0, alice))) && (event(LeakPsk(phase0,
alice, bob)))) || ((event(LeakS(phase0, bob))) &&
(event(LeakPsk(phase0, alice, bob))));

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
7

ProVerif

Tamarin

(also not

fully

automated)

Verifpal: A New
Symbolic Verifier

1. An intuitive language for modeling
protocols (scientific contribution: a new

method for reasoning about protocols in the

symbolic model.)

2. Modeling that avoids user error.

3. Analysis output that’s easy to
understand.

4. Integration with developer
workflow.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
8

A New Approach to Symbolic Verification

…without losing strength

• Can reason about advanced protocols

(eg. Signal, Noise) out of the box.

• Can (soon) analyze for forward secrecy,

key compromise impersonation and

other advanced queries.

• Unbounded sessions, fresh values, and

other cool symbolic model features.

User-focused approach…

• An intuitive language for modeling

protocols.

• Modeling that avoids user error.

• Analysis output that’s easy to

understand.

• Integration with developer workflow.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
9

Verifpal Language

• Explicit principals with discrete internal

states (Alice, Bob, Client, Server…)

• Reads like a protocol diagram.

• You don’t need to know the language to

understand it!

• Knows for private and public values.

• Generates for private fresh values.

• Assignments.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
10

Verifpal Language

• Explicit principals with discrete internal

states (Alice, Bob, Client, Server…)

• Reads like a protocol diagram.

• You don’t need to know the language to

understand it!

• Constants are immutable.

• Global namespace.

• Constant cannot reference other constants.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
11

Verifpal Language: Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
12

Verifpal Language: Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
13

Verifpal Language: Primitives

• Unlike ProVerif, primitives are built-in.

• Users cannot define their own

primitives.

• Bug, not a feature: eliminate user error

on the primitive level.

• Verifpal not targeting users interested in

their own primitives (use ProVerif, it’s

great!)

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
14

Verifpal Language: Equations

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
15

Verifpal Language: Messages and Queries

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
16

Verifpal Language: Simple and Intuitive

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
17

Guarded Constants, Checked Primitives

• This challenge-response protocol is

broken:

• Attacker can man-in-the-middle gs.

• Client will send valid even if signature

verification fails.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
18

Guarded Constants, Checked Primitives

• This challenge-response protocol is

broken:

• Attacker can man-in-the-middle gs.

• Client will send valid even if signature

verification fails.

• Adding brackets around gs “guards” it

against replacement by the active attacker.

• Adding a question mark after SIGNVERIF

makes the model abort execution if it fails.

[

?

]

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
19

Passive Attacker

• Can observe values as they cross the
network.

• Cannot modify values or inject own
values.

• Protocol execution happens once.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
20

Active Attacker

• Can inject own values, substitute
values, etc.

• Unbounded protocol executions.

• Keeps learned values between
sessions (except if constructed from
fresh values.)

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
21

Signal in Verifpal: State Initialization

• Alice wants to initiate a chat with Bob.

• Bob’s signed pre-key and one-time pre-

key are modeled.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
22

Signal in Verifpal: Key Exchange

• Alice receives Bob’s key information

and derives the master secret.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
23

Signal in Verifpal: Messaging

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
24

Signal in Verifpal: Queries and Results

• Typical confidential and authentication

queries for messages sent between Alice

and Bob.

• All queries pass! No contradictions!

• Not surprising: Signal is correctly

modeled, long-term public keys are

guarded; signature verification is

checked.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
25

Protocols Analyzed with Verifpal

• Signal secure messaging protocol.

• Scuttlebutt decentralized protocol.

• ProtonMail encrypted email service.

• Telegram secure messaging protocol.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
26

Verifpal Analysis Soundness

• Four main verification functions:

• Resolve: Resolve a constant’s assignment.

• Deconstruct: Check if a value can be deconstructed based on what the

attacker knows.

• Reconstruct: Check if a value can be reconstructed based on what the

attacker knows.

• Equivocate: Check if two values are equivalent.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
27

Verifpal Analysis Soundness

• Active attacker performs all possible substitutions across an unbounded

number of sessions: so long as new substitutions become possible based on

learned values, it keeps going.

• Each execution keeps applying four main verification functions (Resolve,

Deconstruct, Reconstruct, Equivocate) until no new values appear.

• Constructed malicious values enter table of possible substitutions by the

active attacker.

• Certain rules are respected: abort if guarded primitive fails, don’t keep

values that contain fresh (generated) values…

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
28

Verifpal Analysis

Methodology

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi 29

Verifpal Analysis Soundness

• Assumption: four main verification functions sufficient to extract all

possible values under a particular execution for the attacker.

• Coupled with active attacker substituting/injecting all possible values, we

obtain verification with no missed attacks.

Currently informal theorem, no proof exists

No guarantee of functional correctness

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
30

Why Release Before the Soundness Proof?

• Testing by users and community.

• Soundness proof does not equal absence of bugs.

• Community may suggest changes and fixes (as has already occurred), leading to

changes to the language.

• Does this mean I should still learn Verifpal before the soundness proof is

published?

• Yes! Verifpal’s language and functionalities won’t change: proof will only help

ensure lack of missed attacks.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
31

Verifpal: the First Few Weeks

• Verifpal alpha released with discussions on the Verifpal Mailing List.

• Feedback from Bruno led to a redesign of how equations are expressed in
the language and other changes.

• Feedback from Loup Vaillant led to stronger testing and a better
implementation of authentication queries.

• An anonymous contributor (“Mike”) fuzzed Verifpal’s parser, leading to a
hardening of the parser against unexpected expressions, misleading
statements etc.

• Caught a bunch of bugs.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
32

Verifpal: the First Few Weeks

• I remember a time when F* thought (a + b) ≠ (b + a)…

• …and that was way after the first two weeks of its release!

• So, some perspective, please!

• Soundness proof will come in early 2020.

• Verifpal’s features and supported queries will grow.

• Verifpal’s development process: start with ease of use, finish with advanced features.

F*, CryptoVerif etc. do it the other way around.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
33

Verifpal: the First Few Weeks

• Third-party applications:

• Monokex, a Noise-like authenticated key exchange (Loup Vaillant

David)

• OTRv4, the next version of the Off-the-Record secure messaging

protocol (Georgio Nicolas)

• Old vulnerable Tor handshake, an old vulnerable Tor handshake (Adam

Langley)

• Symbolic Software audits (can’t disclose due to NDAs)

• …and others?

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
34

Verifpal in the Classroom

• Verifpal User Manual: easiest way to

learn how to model and analyze protocols

on the planet.

• NYU test run: huge success. 20-year-old

American undergraduates with no

background whatsoever in security

were modeling protocols in the first two

weeks of class and understanding security

goals/analysis results.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
35

Verifpal in the Classroom

• Upcoming Eurocrypt 2020 affiliated

event:

https://verifpal.com/eurocrypt2020/ –

Verifpal tutorial!

• Verifpal has a place in your

undergraduate classroom and will do a

better job teaching students about

protocols and models than anything else

in the world.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
36

https://verifpal.com/eurocrypt2020/

Verifpal Utilities and Plugins

• Visual Studio Code: currently syntax

highlighting, but much more planned in

the future.

• Vim: syntax highlighting.

• “Verifpal QuickInstall”: quickly install

or update Verifpal on any macOS/Linux

platform:

bash -c "curl -sL https://verifpal.com/install|bash"

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
37

Verifpal: Go vs. Ocaml

• Go allowed for faster development and
also gives Verifpal faster performance.

• Overall, it was not a good decision:
Ocaml’s polymorphic variants and
especially its pattern matching were
sorely missed, and led to inelegant syntax
in some parts of Verifpal.

• Conclusion: not as good an idea as I
thought but still good. Will encourage
contributors?

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
38

What Are Verifpal’s End Goals?

• Soundness proof.

• High quality educational materials for protocol analysis in undergraduate

classes.

• High quality, robust protocol modeling and analysis for engineers, with

integration and live prototyping inside Visual Studio Code.

Verifpal: Cryptographic protocol analysis for students and

engineers – Nadim Kobeissi
39

Try Verifpal Today

Verifpal is released as free and open source
software, under version 3 of the GPL.

Check out Verifpal today:

verifpal.com

Support Verifpal development:

verifpal.com/donate

Verifpal: Cryptographic protocol analysis for students and engineers – Nadim Kobeissi 40

